Package org.apache.spark.ml.fpm
Class FPGrowth
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,FPGrowthParams
,Params
,HasPredictionCol
,DefaultParamsWritable
,Identifiable
,MLWritable
,scala.Serializable
public class FPGrowth
extends Estimator<FPGrowthModel>
implements FPGrowthParams, DefaultParamsWritable
A parallel FP-growth algorithm to mine frequent itemsets. The algorithm is described in
Li et al., PFP: Parallel FP-Growth for Query
Recommendation. PFP distributes computation in such a way that each worker executes an
independent group of mining tasks. The FP-Growth algorithm is described in
Han et al., Mining frequent patterns without
candidate generation. Note null values in the itemsCol column are ignored during fit().
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Fits a model to the input data.itemsCol()
Items column name.static FPGrowth
Minimal confidence for generating Association Rule. minConfidence will not affect the mining for frequent itemsets, but will affect the association rules generation.Minimal support level of the frequent pattern. [0.0, 1.0].Number of partitions (at least 1) used by parallel FP-growth.Param for prediction column name.static MLReader<T>
read()
setItemsCol
(String value) setMinConfidence
(double value) setMinSupport
(double value) setNumPartitions
(int value) setPredictionCol
(String value) transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.uid()
An immutable unique ID for the object and its derivatives.Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
write
Methods inherited from interface org.apache.spark.ml.fpm.FPGrowthParams
getItemsCol, getMinConfidence, getMinSupport, getNumPartitions, validateAndTransformSchema
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol
Methods inherited from interface org.apache.spark.ml.util.Identifiable
toString
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
FPGrowth
-
FPGrowth
public FPGrowth()
-
-
Method Details
-
load
-
read
-
itemsCol
Description copied from interface:FPGrowthParams
Items column name. Default: "items"- Specified by:
itemsCol
in interfaceFPGrowthParams
- Returns:
- (undocumented)
-
minSupport
Description copied from interface:FPGrowthParams
Minimal support level of the frequent pattern. [0.0, 1.0]. Any pattern that appears more than (minSupport * size-of-the-dataset) times will be output in the frequent itemsets. Default: 0.3- Specified by:
minSupport
in interfaceFPGrowthParams
- Returns:
- (undocumented)
-
numPartitions
Description copied from interface:FPGrowthParams
Number of partitions (at least 1) used by parallel FP-growth. By default the param is not set, and partition number of the input dataset is used.- Specified by:
numPartitions
in interfaceFPGrowthParams
- Returns:
- (undocumented)
-
minConfidence
Description copied from interface:FPGrowthParams
Minimal confidence for generating Association Rule. minConfidence will not affect the mining for frequent itemsets, but will affect the association rules generation. Default: 0.8- Specified by:
minConfidence
in interfaceFPGrowthParams
- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionCol
Param for prediction column name.- Specified by:
predictionCol
in interfaceHasPredictionCol
- Returns:
- (undocumented)
-
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
setMinSupport
-
setNumPartitions
-
setMinConfidence
-
setItemsCol
-
setPredictionCol
-
fit
Description copied from class:Estimator
Fits a model to the input data.- Specified by:
fit
in classEstimator<FPGrowthModel>
- Parameters:
dataset
- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchema
in classPipelineStage
- Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classEstimator<FPGrowthModel>
- Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-