Packages

class GBTClassificationModel extends ProbabilisticClassificationModel[Vector, GBTClassificationModel] with GBTClassifierParams with TreeEnsembleModel[DecisionTreeRegressionModel] with MLWritable with Serializable

Gradient-Boosted Trees (GBTs) (http://en.wikipedia.org/wiki/Gradient_boosting) model for classification. It supports binary labels, as well as both continuous and categorical features.

Annotations
@Since( "1.6.0" )
Source
GBTClassifier.scala
Note

Multiclass labels are not currently supported.

Linear Supertypes
MLWritable, TreeEnsembleModel[DecisionTreeRegressionModel], GBTClassifierParams, HasVarianceImpurity, TreeEnsembleClassifierParams, GBTParams, HasValidationIndicatorCol, HasStepSize, HasMaxIter, TreeEnsembleParams, DecisionTreeParams, HasWeightCol, HasSeed, HasCheckpointInterval, ProbabilisticClassificationModel[Vector, GBTClassificationModel], ProbabilisticClassifierParams, HasThresholds, HasProbabilityCol, ClassificationModel[Vector, GBTClassificationModel], ClassifierParams, HasRawPredictionCol, PredictionModel[Vector, GBTClassificationModel], PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Model[GBTClassificationModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. GBTClassificationModel
  2. MLWritable
  3. TreeEnsembleModel
  4. GBTClassifierParams
  5. HasVarianceImpurity
  6. TreeEnsembleClassifierParams
  7. GBTParams
  8. HasValidationIndicatorCol
  9. HasStepSize
  10. HasMaxIter
  11. TreeEnsembleParams
  12. DecisionTreeParams
  13. HasWeightCol
  14. HasSeed
  15. HasCheckpointInterval
  16. ProbabilisticClassificationModel
  17. ProbabilisticClassifierParams
  18. HasThresholds
  19. HasProbabilityCol
  20. ClassificationModel
  21. ClassifierParams
  22. HasRawPredictionCol
  23. PredictionModel
  24. PredictorParams
  25. HasPredictionCol
  26. HasFeaturesCol
  27. HasLabelCol
  28. Model
  29. Transformer
  30. PipelineStage
  31. Logging
  32. Params
  33. Serializable
  34. Serializable
  35. Identifiable
  36. AnyRef
  37. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GBTClassificationModel(uid: String, _trees: Array[DecisionTreeRegressionModel], _treeWeights: Array[Double])

    Construct a GBTClassificationModel

    Construct a GBTClassificationModel

    _trees

    Decision trees in the ensemble.

    _treeWeights

    Weights for the decision trees in the ensemble.

    Annotations
    @Since( "1.6.0" )

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. final val cacheNodeIds: BooleanParam

    If false, the algorithm will pass trees to executors to match instances with nodes.

    If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false)

    Definition Classes
    DecisionTreeParams
  7. final val checkpointInterval: IntParam

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1).

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.

    Definition Classes
    HasCheckpointInterval
  8. final def clear(param: Param[_]): GBTClassificationModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  9. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  10. def copy(extra: ParamMap): GBTClassificationModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    GBTClassificationModelModelTransformerPipelineStageParams
    Annotations
    @Since( "1.4.0" )
  11. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  12. final def defaultCopy[T <: Params](extra: ParamMap): T

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  13. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  14. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  15. def evaluateEachIteration(dataset: Dataset[_]): Array[Double]

    Method to compute error or loss for every iteration of gradient boosting.

    Method to compute error or loss for every iteration of gradient boosting.

    dataset

    Dataset for validation.

    Annotations
    @Since( "2.4.0" )
  16. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  17. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  18. def extractInstances(dataset: Dataset[_], numClasses: Int): RDD[Instance]

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types. Validates the label on the classifier is a valid integer in the range [0, numClasses).

    Attributes
    protected
    Definition Classes
    ClassifierParams
  19. def extractInstances(dataset: Dataset[_], validateInstance: (Instance) ⇒ Unit): RDD[Instance]

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types. Validate the output instances with the given function.

    Attributes
    protected
    Definition Classes
    PredictorParams
  20. def extractInstances(dataset: Dataset[_]): RDD[Instance]

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.

    Attributes
    protected
    Definition Classes
    PredictorParams
  21. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  22. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  23. lazy val featureImportances: Vector

    Estimate of the importance of each feature.

    Estimate of the importance of each feature.

    Each feature's importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.) and follows the implementation from scikit-learn.

    See DecisionTreeClassificationModel.featureImportances

    Annotations
    @Since( "2.0.0" )
  24. final val featureSubsetStrategy: Param[String]

    The number of features to consider for splits at each tree node.

    The number of features to consider for splits at each tree node. Supported options:

    • "auto": Choose automatically for task: If numTrees == 1, set to "all." If numTrees greater than 1 (forest), set to "sqrt" for classification and to "onethird" for regression.
    • "all": use all features
    • "onethird": use 1/3 of the features
    • "sqrt": use sqrt(number of features)
    • "log2": use log2(number of features)
    • "n": when n is in the range (0, 1.0], use n * number of features. When n is in the range (1, number of features), use n features. (default = "auto")

    These various settings are based on the following references:

    • log2: tested in Breiman (2001)
    • sqrt: recommended by Breiman manual for random forests
    • The defaults of sqrt (classification) and onethird (regression) match the R randomForest package.
    Definition Classes
    TreeEnsembleParams
    See also

    Breiman (2001)

    Breiman manual for random forests

  25. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  26. def featuresDataType: DataType

    Returns the SQL DataType corresponding to the FeaturesType type parameter.

    Returns the SQL DataType corresponding to the FeaturesType type parameter.

    This is used by validateAndTransformSchema(). This workaround is needed since SQL has different APIs for Scala and Java.

    The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.

    Attributes
    protected
    Definition Classes
    PredictionModel
  27. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  28. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  29. final def getCacheNodeIds: Boolean

    Definition Classes
    DecisionTreeParams
  30. final def getCheckpointInterval: Int

    Definition Classes
    HasCheckpointInterval
  31. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  32. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  33. final def getFeatureSubsetStrategy: String

    Definition Classes
    TreeEnsembleParams
  34. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  35. final def getImpurity: String

    Definition Classes
    HasVarianceImpurity
  36. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  37. final def getLeafCol: String

    Definition Classes
    DecisionTreeParams
    Annotations
    @Since( "3.0.0" )
  38. def getLossType: String

    Definition Classes
    GBTClassifierParams
  39. final def getMaxBins: Int

    Definition Classes
    DecisionTreeParams
  40. final def getMaxDepth: Int

    Definition Classes
    DecisionTreeParams
  41. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  42. final def getMaxMemoryInMB: Int

    Definition Classes
    DecisionTreeParams
  43. final def getMinInfoGain: Double

    Definition Classes
    DecisionTreeParams
  44. final def getMinInstancesPerNode: Int

    Definition Classes
    DecisionTreeParams
  45. final def getMinWeightFractionPerNode: Double

    Definition Classes
    DecisionTreeParams
  46. val getNumTrees: Int

    Number of trees in ensemble

    Number of trees in ensemble

    Annotations
    @Since( "2.0.0" )
  47. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  48. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  49. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  50. final def getProbabilityCol: String

    Definition Classes
    HasProbabilityCol
  51. final def getRawPredictionCol: String

    Definition Classes
    HasRawPredictionCol
  52. final def getSeed: Long

    Definition Classes
    HasSeed
  53. final def getStepSize: Double

    Definition Classes
    HasStepSize
  54. final def getSubsamplingRate: Double

    Definition Classes
    TreeEnsembleParams
  55. def getThresholds: Array[Double]

    Definition Classes
    HasThresholds
  56. final def getValidationIndicatorCol: String

    Definition Classes
    HasValidationIndicatorCol
  57. final def getValidationTol: Double

    Definition Classes
    GBTParams
    Annotations
    @Since( "2.4.0" )
  58. final def getWeightCol: String

    Definition Classes
    HasWeightCol
  59. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  60. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  61. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  62. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  63. final val impurity: Param[String]

    Criterion used for information gain calculation (case-insensitive).

    Criterion used for information gain calculation (case-insensitive). This impurity type is used in DecisionTreeRegressor, RandomForestRegressor, GBTRegressor and GBTClassifier (since GBTClassificationModel is internally composed of DecisionTreeRegressionModels). Supported: "variance". (default = variance)

    Definition Classes
    HasVarianceImpurity
  64. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  65. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  66. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  67. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  68. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  69. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  70. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  71. final val leafCol: Param[String]

    Leaf indices column name.

    Leaf indices column name. Predicted leaf index of each instance in each tree by preorder. (default = "")

    Definition Classes
    DecisionTreeParams
    Annotations
    @Since( "3.0.0" )
  72. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  73. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  77. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  79. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  80. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  81. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  82. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  83. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  84. val lossType: Param[String]

    Loss function which GBT tries to minimize.

    Loss function which GBT tries to minimize. (case-insensitive) Supported: "logistic" (default = logistic)

    Definition Classes
    GBTClassifierParams
  85. final val maxBins: IntParam

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be at least 2 and at least number of categories in any categorical feature. (default = 32)

    Definition Classes
    DecisionTreeParams
  86. final val maxDepth: IntParam

    Maximum depth of the tree (nonnegative).

    Maximum depth of the tree (nonnegative). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5)

    Definition Classes
    DecisionTreeParams
  87. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  88. final val maxMemoryInMB: IntParam

    Maximum memory in MB allocated to histogram aggregation.

    Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB)

    Definition Classes
    DecisionTreeParams
  89. final val minInfoGain: DoubleParam

    Minimum information gain for a split to be considered at a tree node.

    Minimum information gain for a split to be considered at a tree node. Should be at least 0.0. (default = 0.0)

    Definition Classes
    DecisionTreeParams
  90. final val minInstancesPerNode: IntParam

    Minimum number of instances each child must have after split.

    Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Must be at least 1. (default = 1)

    Definition Classes
    DecisionTreeParams
  91. final val minWeightFractionPerNode: DoubleParam

    Minimum fraction of the weighted sample count that each child must have after split.

    Minimum fraction of the weighted sample count that each child must have after split. If a split causes the fraction of the total weight in the left or right child to be less than minWeightFractionPerNode, the split will be discarded as invalid. Should be in the interval [0.0, 0.5). (default = 0.0)

    Definition Classes
    DecisionTreeParams
  92. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  93. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  94. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  95. val numClasses: Int

    Number of classes (values which the label can take).

    Number of classes (values which the label can take).

    Definition Classes
    GBTClassificationModelClassificationModel
    Annotations
    @Since( "2.2.0" )
  96. val numFeatures: Int

    Returns the number of features the model was trained on.

    Returns the number of features the model was trained on. If unknown, returns -1

    Definition Classes
    GBTClassificationModelPredictionModel
    Annotations
    @Since( "1.6.0" )
  97. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  98. var parent: Estimator[GBTClassificationModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  99. def predict(features: Vector): Double

    Predict label for the given features.

    Predict label for the given features. This method is used to implement transform() and output predictionCol.

    This default implementation for classification predicts the index of the maximum value from predictRaw().

    Definition Classes
    GBTClassificationModelClassificationModelPredictionModel
  100. def predictLeaf(features: Vector): Vector

    returns

    The indices of the leaves corresponding to the feature vector. Leaves are indexed in pre-order from 0.

    Definition Classes
    TreeEnsembleModel
  101. def predictProbability(features: Vector): Vector

    Predict the probability of each class given the features.

    Predict the probability of each class given the features. These predictions are also called class conditional probabilities.

    This internal method is used to implement transform() and output probabilityCol.

    returns

    Estimated class conditional probabilities

    Definition Classes
    ProbabilisticClassificationModel
    Annotations
    @Since( "3.0.0" )
  102. def predictRaw(features: Vector): Vector

    Raw prediction for each possible label.

    Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implement transform() and output rawPredictionCol.

    returns

    vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.

    Definition Classes
    GBTClassificationModelClassificationModel
    Annotations
    @Since( "3.0.0" )
  103. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  104. def probability2prediction(probability: Vector): Double

    Given a vector of class conditional probabilities, select the predicted label.

    Given a vector of class conditional probabilities, select the predicted label. This supports thresholds which favor particular labels.

    returns

    predicted label

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModel
  105. final val probabilityCol: Param[String]

    Param for Column name for predicted class conditional probabilities.

    Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.

    Definition Classes
    HasProbabilityCol
  106. def raw2prediction(rawPrediction: Vector): Double

    Given a vector of raw predictions, select the predicted label.

    Given a vector of raw predictions, select the predicted label. This may be overridden to support thresholds which favor particular labels.

    returns

    predicted label

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModelClassificationModel
  107. def raw2probability(rawPrediction: Vector): Vector

    Non-in-place version of raw2probabilityInPlace()

    Non-in-place version of raw2probabilityInPlace()

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModel
  108. def raw2probabilityInPlace(rawPrediction: Vector): Vector

    Estimate the probability of each class given the raw prediction, doing the computation in-place.

    Estimate the probability of each class given the raw prediction, doing the computation in-place. These predictions are also called class conditional probabilities.

    This internal method is used to implement transform() and output probabilityCol.

    returns

    Estimated class conditional probabilities (modified input vector)

    Attributes
    protected
    Definition Classes
    GBTClassificationModelProbabilisticClassificationModel
  109. final val rawPredictionCol: Param[String]

    Param for raw prediction (a.k.a.

    Param for raw prediction (a.k.a. confidence) column name.

    Definition Classes
    HasRawPredictionCol
  110. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  111. final val seed: LongParam

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  112. final def set(paramPair: ParamPair[_]): GBTClassificationModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  113. final def set(param: String, value: Any): GBTClassificationModel.this.type

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  114. final def set[T](param: Param[T], value: T): GBTClassificationModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  115. final def setDefault(paramPairs: ParamPair[_]*): GBTClassificationModel.this.type

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  116. final def setDefault[T](param: Param[T], value: T): GBTClassificationModel.this.type

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  117. def setFeaturesCol(value: String): GBTClassificationModel

    Definition Classes
    PredictionModel
  118. final def setLeafCol(value: String): GBTClassificationModel.this.type

    Definition Classes
    DecisionTreeParams
    Annotations
    @Since( "3.0.0" )
  119. def setParent(parent: Estimator[GBTClassificationModel]): GBTClassificationModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  120. def setPredictionCol(value: String): GBTClassificationModel

    Definition Classes
    PredictionModel
  121. def setProbabilityCol(value: String): GBTClassificationModel

  122. def setRawPredictionCol(value: String): GBTClassificationModel

    Definition Classes
    ClassificationModel
  123. def setThresholds(value: Array[Double]): GBTClassificationModel

  124. final val stepSize: DoubleParam

    Param for Step size (a.k.a.

    Param for Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of each estimator. (default = 0.1)

    Definition Classes
    GBTParams → HasStepSize
  125. final val subsamplingRate: DoubleParam

    Fraction of the training data used for learning each decision tree, in range (0, 1].

    Fraction of the training data used for learning each decision tree, in range (0, 1]. (default = 1.0)

    Definition Classes
    TreeEnsembleParams
  126. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  127. val thresholds: DoubleArrayParam

    Param for Thresholds in multi-class classification to adjust the probability of predicting each class.

    Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.

    Definition Classes
    HasThresholds
  128. def toDebugString: String

    Full description of model

    Full description of model

    Definition Classes
    TreeEnsembleModel
  129. def toString(): String

    Summary of the model

    Summary of the model

    Definition Classes
    GBTClassificationModel → TreeEnsembleModel → Identifiable → AnyRef → Any
    Annotations
    @Since( "1.4.0" )
  130. lazy val totalNumNodes: Int

    Total number of nodes, summed over all trees in the ensemble.

    Total number of nodes, summed over all trees in the ensemble.

    Definition Classes
    TreeEnsembleModel
  131. def transform(dataset: Dataset[_]): DataFrame

    Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:

    Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:

    dataset

    input dataset

    returns

    transformed dataset

    Definition Classes
    GBTClassificationModelProbabilisticClassificationModelClassificationModelPredictionModelTransformer
  132. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  133. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  134. final def transformImpl(dataset: Dataset[_]): DataFrame
    Definition Classes
    ClassificationModelPredictionModel
  135. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    GBTClassificationModelProbabilisticClassificationModelClassificationModelPredictionModelPipelineStage
    Annotations
    @Since( "1.6.0" )
  136. def transformSchema(schema: StructType, logging: Boolean): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  137. def treeWeights: Array[Double]

    Weights for each tree, zippable with trees

    Weights for each tree, zippable with trees

    Definition Classes
    GBTClassificationModel → TreeEnsembleModel
    Annotations
    @Since( "1.4.0" )
  138. def trees: Array[DecisionTreeRegressionModel]

    Trees in this ensemble.

    Trees in this ensemble. Warning: These have null parent Estimators.

    Definition Classes
    GBTClassificationModel → TreeEnsembleModel
    Annotations
    @Since( "1.4.0" )
  139. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    GBTClassificationModelIdentifiable
    Annotations
    @Since( "1.6.0" )
  140. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Validates and transforms the input schema with the provided param map.

    Validates and transforms the input schema with the provided param map.

    schema

    input schema

    fitting

    whether this is in fitting

    featuresDataType

    SQL DataType for FeaturesType. E.g., VectorUDT for vector features.

    returns

    output schema

    Attributes
    protected
    Definition Classes
    TreeEnsembleClassifierParams → ProbabilisticClassifierParams → ClassifierParams → PredictorParams
  141. final val validationIndicatorCol: Param[String]

    Param for name of the column that indicates whether each row is for training or for validation.

    Param for name of the column that indicates whether each row is for training or for validation. False indicates training; true indicates validation..

    Definition Classes
    HasValidationIndicatorCol
  142. final val validationTol: DoubleParam

    Threshold for stopping early when fit with validation is used.

    Threshold for stopping early when fit with validation is used. (This parameter is ignored when fit without validation is used.) The decision to stop early is decided based on this logic: If the current loss on the validation set is greater than 0.01, the diff of validation error is compared to relative tolerance which is validationTol * (current loss on the validation set). If the current loss on the validation set is less than or equal to 0.01, the diff of validation error is compared to absolute tolerance which is validationTol * 0.01.

    Definition Classes
    GBTParams
    Annotations
    @Since( "2.4.0" )
    See also

    validationIndicatorCol

  143. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  144. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  145. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  146. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol
  147. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    GBTClassificationModelMLWritable
    Annotations
    @Since( "2.0.0" )

Inherited from MLWritable

Inherited from TreeEnsembleModel[DecisionTreeRegressionModel]

Inherited from GBTClassifierParams

Inherited from HasVarianceImpurity

Inherited from TreeEnsembleClassifierParams

Inherited from GBTParams

Inherited from HasValidationIndicatorCol

Inherited from HasStepSize

Inherited from HasMaxIter

Inherited from TreeEnsembleParams

Inherited from DecisionTreeParams

Inherited from HasWeightCol

Inherited from HasSeed

Inherited from HasCheckpointInterval

Inherited from ProbabilisticClassifierParams

Inherited from HasThresholds

Inherited from HasProbabilityCol

Inherited from ClassifierParams

Inherited from HasRawPredictionCol

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from Model[GBTClassificationModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

(expert-only) Parameter getters