public interface LogisticRegressionTrainingSummary extends LogisticRegressionSummary
Modifier and Type | Method and Description |
---|---|
double[] |
objectiveHistory()
objective function (scaled loss + regularization) at each iteration.
|
int |
totalIterations()
Number of training iterations.
|
accuracy, asBinary, falsePositiveRateByLabel, featuresCol, fMeasureByLabel, fMeasureByLabel, labelCol, labels, multiclassMetrics, precisionByLabel, predictionCol, predictions, probabilityCol, recallByLabel, truePositiveRateByLabel, weightedFalsePositiveRate, weightedFMeasure, weightedFMeasure, weightedPrecision, weightedRecall, weightedTruePositiveRate