public class GBTClassificationModel extends ProbabilisticClassificationModel<Vector,GBTClassificationModel> implements GBTClassifierParams, TreeEnsembleModel<DecisionTreeRegressionModel>, MLWritable, scala.Serializable
param: _trees Decision trees in the ensemble. param: _treeWeights Weights for the decision trees in the ensemble.
Constructor and Description |
---|
GBTClassificationModel(String uid,
DecisionTreeRegressionModel[] _trees,
double[] _treeWeights)
Construct a GBTClassificationModel
|
Modifier and Type | Method and Description |
---|---|
GBTClassificationModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
double[] |
evaluateEachIteration(Dataset<?> dataset)
Method to compute error or loss for every iteration of gradient boosting.
|
Vector |
featureImportances()
Estimate of the importance of each feature.
|
int |
getNumTrees()
Number of trees in ensemble
|
static GBTClassificationModel |
load(String path) |
int |
numClasses()
Number of classes (values which the label can take).
|
int |
numFeatures()
Returns the number of features the model was trained on.
|
int |
numTrees()
Deprecated.
Use
getNumTrees instead. This method will be removed in 3.0.0. |
double |
predict(Vector features)
Predict label for the given features.
|
static MLReader<GBTClassificationModel> |
read() |
String |
toString()
Summary of the model
|
DecisionTreeRegressionModel[] |
trees()
Trees in this ensemble.
|
double[] |
treeWeights()
Weights for each tree, zippable with
trees |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
normalizeToProbabilitiesInPlace, setProbabilityCol, setThresholds, transform
setRawPredictionCol
setFeaturesCol, setPredictionCol, transformSchema
transform, transform, transform
getLossType, getOldLossType, lossType
getOldBoostingStrategy, getValidationTol, setMaxIter, setStepSize, stepSize, validationTol
featureSubsetStrategy, getFeatureSubsetStrategy, getOldStrategy, getSubsamplingRate, setFeatureSubsetStrategy, setSubsamplingRate, subsamplingRate
cacheNodeIds, getCacheNodeIds, getMaxBins, getMaxDepth, getMaxMemoryInMB, getMinInfoGain, getMinInstancesPerNode, getOldStrategy, maxBins, maxDepth, maxMemoryInMB, minInfoGain, minInstancesPerNode, setCacheNodeIds, setCheckpointInterval, setMaxBins, setMaxDepth, setMaxMemoryInMB, setMinInfoGain, setMinInstancesPerNode, setSeed
validateAndTransformSchema
getLabelCol, labelCol
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
checkpointInterval, getCheckpointInterval
getMaxIter, maxIter
getStepSize
getValidationIndicatorCol, validationIndicatorCol
getImpurity, getOldImpurity, impurity, setImpurity
javaTreeWeights, toDebugString, totalNumNodes
save
validateAndTransformSchema
getRawPredictionCol, rawPredictionCol
getProbabilityCol, probabilityCol
getThresholds, thresholds
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public GBTClassificationModel(String uid, DecisionTreeRegressionModel[] _trees, double[] _treeWeights)
_trees
- Decision trees in the ensemble._treeWeights
- Weights for the decision trees in the ensemble.uid
- (undocumented)public static MLReader<GBTClassificationModel> read()
public static GBTClassificationModel load(String path)
public String uid()
Identifiable
uid
in interface Identifiable
public int numFeatures()
PredictionModel
numFeatures
in class PredictionModel<Vector,GBTClassificationModel>
public int numClasses()
ClassificationModel
numClasses
in class ClassificationModel<Vector,GBTClassificationModel>
public DecisionTreeRegressionModel[] trees()
TreeEnsembleModel
trees
in interface TreeEnsembleModel<DecisionTreeRegressionModel>
public int getNumTrees()
public double[] treeWeights()
TreeEnsembleModel
trees
treeWeights
in interface TreeEnsembleModel<DecisionTreeRegressionModel>
public double predict(Vector features)
ClassificationModel
transform()
and output predictionCol
.
This default implementation for classification predicts the index of the maximum value
from predictRaw()
.
predict
in class ClassificationModel<Vector,GBTClassificationModel>
features
- (undocumented)public int numTrees()
getNumTrees
instead. This method will be removed in 3.0.0.public GBTClassificationModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<GBTClassificationModel>
extra
- (undocumented)public String toString()
TreeEnsembleModel
toString
in interface TreeEnsembleModel<DecisionTreeRegressionModel>
toString
in interface Identifiable
toString
in class Object
public Vector featureImportances()
Each feature's importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.) and follows the implementation from scikit-learn.
See DecisionTreeClassificationModel.featureImportances
public double[] evaluateEachIteration(Dataset<?> dataset)
dataset
- Dataset for validation.public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable