Modifier and Type | Method and Description |
---|---|
Dataset<Row> |
csv(Dataset<String> csvDataset)
Loads an
Dataset[String] storing CSV rows and returns the result as a DataFrame . |
Dataset<Row> |
csv(scala.collection.Seq<String> paths)
Loads CSV files and returns the result as a
DataFrame . |
Dataset<Row> |
csv(String... paths)
Loads CSV files and returns the result as a
DataFrame . |
Dataset<Row> |
csv(String path)
Loads a CSV file and returns the result as a
DataFrame . |
DataFrameReader |
format(String source)
Specifies the input data source format.
|
Dataset<Row> |
jdbc(String url,
String table,
java.util.Properties properties)
Construct a
DataFrame representing the database table accessible via JDBC URL
url named table and connection properties. |
Dataset<Row> |
jdbc(String url,
String table,
String[] predicates,
java.util.Properties connectionProperties)
Construct a
DataFrame representing the database table accessible via JDBC URL
url named table using connection properties. |
Dataset<Row> |
jdbc(String url,
String table,
String columnName,
long lowerBound,
long upperBound,
int numPartitions,
java.util.Properties connectionProperties)
Construct a
DataFrame representing the database table accessible via JDBC URL
url named table. |
Dataset<Row> |
json(Dataset<String> jsonDataset)
Loads a
Dataset[String] storing JSON objects (JSON Lines
text format or newline-delimited JSON) and returns the result as a DataFrame . |
Dataset<Row> |
json(JavaRDD<String> jsonRDD)
Deprecated.
Use json(Dataset[String]) instead. Since 2.2.0.
|
Dataset<Row> |
json(RDD<String> jsonRDD)
Deprecated.
Use json(Dataset[String]) instead. Since 2.2.0.
|
Dataset<Row> |
json(scala.collection.Seq<String> paths)
Loads JSON files and returns the results as a
DataFrame . |
Dataset<Row> |
json(String... paths)
Loads JSON files and returns the results as a
DataFrame . |
Dataset<Row> |
json(String path)
Loads a JSON file and returns the results as a
DataFrame . |
Dataset<Row> |
load()
Loads input in as a
DataFrame , for data sources that don't require a path (e.g. |
Dataset<Row> |
load(scala.collection.Seq<String> paths)
Loads input in as a
DataFrame , for data sources that support multiple paths. |
Dataset<Row> |
load(String... paths)
Loads input in as a
DataFrame , for data sources that support multiple paths. |
Dataset<Row> |
load(String path)
Loads input in as a
DataFrame , for data sources that require a path (e.g. |
DataFrameReader |
option(String key,
boolean value)
Adds an input option for the underlying data source.
|
DataFrameReader |
option(String key,
double value)
Adds an input option for the underlying data source.
|
DataFrameReader |
option(String key,
long value)
Adds an input option for the underlying data source.
|
DataFrameReader |
option(String key,
String value)
Adds an input option for the underlying data source.
|
DataFrameReader |
options(scala.collection.Map<String,String> options)
(Scala-specific) Adds input options for the underlying data source.
|
DataFrameReader |
options(java.util.Map<String,String> options)
Adds input options for the underlying data source.
|
Dataset<Row> |
orc(scala.collection.Seq<String> paths)
Loads ORC files and returns the result as a
DataFrame . |
Dataset<Row> |
orc(String... paths)
Loads ORC files and returns the result as a
DataFrame . |
Dataset<Row> |
orc(String path)
Loads an ORC file and returns the result as a
DataFrame . |
Dataset<Row> |
parquet(scala.collection.Seq<String> paths)
Loads a Parquet file, returning the result as a
DataFrame . |
Dataset<Row> |
parquet(String... paths)
Loads a Parquet file, returning the result as a
DataFrame . |
Dataset<Row> |
parquet(String path)
Loads a Parquet file, returning the result as a
DataFrame . |
DataFrameReader |
schema(String schemaString)
Specifies the schema by using the input DDL-formatted string.
|
DataFrameReader |
schema(StructType schema)
Specifies the input schema.
|
Dataset<Row> |
table(String tableName)
Returns the specified table as a
DataFrame . |
Dataset<Row> |
text(scala.collection.Seq<String> paths)
Loads text files and returns a
DataFrame whose schema starts with a string column named
"value", and followed by partitioned columns if there are any. |
Dataset<Row> |
text(String... paths)
Loads text files and returns a
DataFrame whose schema starts with a string column named
"value", and followed by partitioned columns if there are any. |
Dataset<Row> |
text(String path)
Loads text files and returns a
DataFrame whose schema starts with a string column named
"value", and followed by partitioned columns if there are any. |
Dataset<String> |
textFile(scala.collection.Seq<String> paths)
Loads text files and returns a
Dataset of String. |
Dataset<String> |
textFile(String... paths)
Loads text files and returns a
Dataset of String. |
Dataset<String> |
textFile(String path)
Loads text files and returns a
Dataset of String. |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public Dataset<Row> load(String... paths)
DataFrame
, for data sources that support multiple paths.
Only works if the source is a HadoopFsRelationProvider.
paths
- (undocumented)public Dataset<Row> json(String... paths)
DataFrame
.
JSON Lines (newline-delimited JSON) is supported by
default. For JSON (one record per file), set the multiLine
option to true.
This function goes through the input once to determine the input schema. If you know the schema in advance, use the version that specifies the schema to avoid the extra scan.
You can set the following JSON-specific options to deal with non-standard JSON files:
primitivesAsString
(default false
): infers all primitive values as a string typeprefersDecimal
(default false
): infers all floating-point values as a decimal
type. If the values do not fit in decimal, then it infers them as doubles.allowComments
(default false
): ignores Java/C++ style comment in JSON recordsallowUnquotedFieldNames
(default false
): allows unquoted JSON field namesallowSingleQuotes
(default true
): allows single quotes in addition to double quotes
allowNumericLeadingZeros
(default false
): allows leading zeros in numbers
(e.g. 00012)allowBackslashEscapingAnyCharacter
(default false
): allows accepting quoting of all
character using backslash quoting mechanismallowUnquotedControlChars
(default false
): allows JSON Strings to contain unquoted
control characters (ASCII characters with value less than 32, including tab and line feed
characters) or not.mode
(default PERMISSIVE
): allows a mode for dealing with corrupt records
during parsing.
PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a
field configured by columnNameOfCorruptRecord
, and sets other fields to null
. To
keep corrupt records, an user can set a string type field named
columnNameOfCorruptRecord
in an user-defined schema. If a schema does not have the
field, it drops corrupt records during parsing. When inferring a schema, it implicitly
adds a columnNameOfCorruptRecord
field in an output schema.DROPMALFORMED
: ignores the whole corrupted records.FAILFAST
: throws an exception when it meets corrupted records.columnNameOfCorruptRecord
(default is the value specified in
spark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string
created by PERMISSIVE
mode. This overrides spark.sql.columnNameOfCorruptRecord
.dateFormat
(default yyyy-MM-dd
): sets the string that indicates a date format.
Custom date formats follow the formats at java.text.SimpleDateFormat
. This applies to
date type.timestampFormat
(default yyyy-MM-dd'T'HH:mm:ss.SSSXXX
): sets the string that
indicates a timestamp format. Custom date formats follow the formats at
java.text.SimpleDateFormat
. This applies to timestamp type.multiLine
(default false
): parse one record, which may span multiple lines,
per filepaths
- (undocumented)public Dataset<Row> csv(String... paths)
DataFrame
.
This function will go through the input once to determine the input schema if inferSchema
is enabled. To avoid going through the entire data once, disable inferSchema
option or
specify the schema explicitly using schema
.
You can set the following CSV-specific options to deal with CSV files:
sep
(default ,
): sets a single character as a separator for each
field and value.encoding
(default UTF-8
): decodes the CSV files by the given encoding
type.quote
(default "
): sets a single character used for escaping quoted values where
the separator can be part of the value. If you would like to turn off quotations, you need to
set not null
but an empty string. This behaviour is different from
com.databricks.spark.csv
.escape
(default \
): sets a single character used for escaping quotes inside
an already quoted value.charToEscapeQuoteEscaping
(default escape
or \0
): sets a single character used for
escaping the escape for the quote character. The default value is escape character when escape
and quote characters are different, \0
otherwise.comment
(default empty string): sets a single character used for skipping lines
beginning with this character. By default, it is disabled.header
(default false
): uses the first line as names of columns.inferSchema
(default false
): infers the input schema automatically from data. It
requires one extra pass over the data.ignoreLeadingWhiteSpace
(default false
): a flag indicating whether or not leading
whitespaces from values being read should be skipped.ignoreTrailingWhiteSpace
(default false
): a flag indicating whether or not trailing
whitespaces from values being read should be skipped.nullValue
(default empty string): sets the string representation of a null value. Since
2.0.1, this applies to all supported types including the string type.nanValue
(default NaN
): sets the string representation of a non-number" value.positiveInf
(default Inf
): sets the string representation of a positive infinity
value.negativeInf
(default -Inf
): sets the string representation of a negative infinity
value.dateFormat
(default yyyy-MM-dd
): sets the string that indicates a date format.
Custom date formats follow the formats at java.text.SimpleDateFormat
. This applies to
date type.timestampFormat
(default yyyy-MM-dd'T'HH:mm:ss.SSSXXX
): sets the string that
indicates a timestamp format. Custom date formats follow the formats at
java.text.SimpleDateFormat
. This applies to timestamp type.maxColumns
(default 20480
): defines a hard limit of how many columns
a record can have.maxCharsPerColumn
(default -1
): defines the maximum number of characters allowed
for any given value being read. By default, it is -1 meaning unlimited lengthmode
(default PERMISSIVE
): allows a mode for dealing with corrupt records
during parsing. It supports the following case-insensitive modes.
PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a
field configured by columnNameOfCorruptRecord
, and sets other fields to null
. To keep
corrupt records, an user can set a string type field named columnNameOfCorruptRecord
in an user-defined schema. If a schema does not have the field, it drops corrupt records
during parsing. A record with less/more tokens than schema is not a corrupted record to
CSV. When it meets a record having fewer tokens than the length of the schema, sets
null
to extra fields. When the record has more tokens than the length of the schema,
it drops extra tokens.DROPMALFORMED
: ignores the whole corrupted records.FAILFAST
: throws an exception when it meets corrupted records.columnNameOfCorruptRecord
(default is the value specified in
spark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string
created by PERMISSIVE
mode. This overrides spark.sql.columnNameOfCorruptRecord
.multiLine
(default false
): parse one record, which may span multiple lines.paths
- (undocumented)public Dataset<Row> parquet(String... paths)
DataFrame
.
You can set the following Parquet-specific option(s) for reading Parquet files:
mergeSchema
(default is the value specified in spark.sql.parquet.mergeSchema
): sets
whether we should merge schemas collected from all Parquet part-files. This will override
spark.sql.parquet.mergeSchema
.paths
- (undocumented)public Dataset<Row> orc(String... paths)
DataFrame
.
paths
- input pathspublic Dataset<Row> text(String... paths)
DataFrame
whose schema starts with a string column named
"value", and followed by partitioned columns if there are any.
You can set the following text-specific option(s) for reading text files:
wholetext
( default false
): If true, read a file as a single row and not split by "\n".
Usage example:
// Scala:
spark.read.text("/path/to/spark/README.md")
// Java:
spark.read().text("/path/to/spark/README.md")
paths
- input pathspublic Dataset<String> textFile(String... paths)
Dataset
of String. The underlying schema of the Dataset
contains a single string column named "value".
If the directory structure of the text files contains partitioning information, those are
ignored in the resulting Dataset. To include partitioning information as columns, use text
.
You can set the following textFile-specific option(s) for reading text files:
wholetext
( default false
): If true, read a file as a single row and not split by "\n".
// Scala:
spark.read.textFile("/path/to/spark/README.md")
// Java:
spark.read().textFile("/path/to/spark/README.md")
paths
- input pathpublic DataFrameReader format(String source)
source
- (undocumented)public DataFrameReader schema(StructType schema)
schema
- (undocumented)public DataFrameReader schema(String schemaString)
spark.read.schema("a INT, b STRING, c DOUBLE").csv("test.csv")
schemaString
- (undocumented)public DataFrameReader option(String key, String value)
You can set the following option(s):
timeZone
(default session local timezone): sets the string that indicates a timezone
to be used to parse timestamps in the JSON/CSV datasources or partition values.key
- (undocumented)value
- (undocumented)public DataFrameReader option(String key, boolean value)
key
- (undocumented)value
- (undocumented)public DataFrameReader option(String key, long value)
key
- (undocumented)value
- (undocumented)public DataFrameReader option(String key, double value)
key
- (undocumented)value
- (undocumented)public DataFrameReader options(scala.collection.Map<String,String> options)
You can set the following option(s):
timeZone
(default session local timezone): sets the string that indicates a timezone
to be used to parse timestamps in the JSON/CSV datasources or partition values.options
- (undocumented)public DataFrameReader options(java.util.Map<String,String> options)
You can set the following option(s):
timeZone
(default session local timezone): sets the string that indicates a timezone
to be used to parse timestamps in the JSON/CSV datasources or partition values.options
- (undocumented)public Dataset<Row> load()
DataFrame
, for data sources that don't require a path (e.g. external
key-value stores).
public Dataset<Row> load(String path)
DataFrame
, for data sources that require a path (e.g. data backed by
a local or distributed file system).
path
- (undocumented)public Dataset<Row> load(scala.collection.Seq<String> paths)
DataFrame
, for data sources that support multiple paths.
Only works if the source is a HadoopFsRelationProvider.
paths
- (undocumented)public Dataset<Row> jdbc(String url, String table, java.util.Properties properties)
DataFrame
representing the database table accessible via JDBC URL
url named table and connection properties.
url
- (undocumented)table
- (undocumented)properties
- (undocumented)public Dataset<Row> jdbc(String url, String table, String columnName, long lowerBound, long upperBound, int numPartitions, java.util.Properties connectionProperties)
DataFrame
representing the database table accessible via JDBC URL
url named table. Partitions of the table will be retrieved in parallel based on the parameters
passed to this function.
Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash your external database systems.
url
- JDBC database url of the form jdbc:subprotocol:subname
.table
- Name of the table in the external database.columnName
- the name of a column of integral type that will be used for partitioning.lowerBound
- the minimum value of columnName
used to decide partition stride.upperBound
- the maximum value of columnName
used to decide partition stride.numPartitions
- the number of partitions. This, along with lowerBound
(inclusive),
upperBound
(exclusive), form partition strides for generated WHERE
clause expressions used to split the column columnName
evenly. When
the input is less than 1, the number is set to 1.connectionProperties
- JDBC database connection arguments, a list of arbitrary string
tag/value. Normally at least a "user" and "password" property
should be included. "fetchsize" can be used to control the
number of rows per fetch.public Dataset<Row> jdbc(String url, String table, String[] predicates, java.util.Properties connectionProperties)
DataFrame
representing the database table accessible via JDBC URL
url named table using connection properties. The predicates
parameter gives a list
expressions suitable for inclusion in WHERE clauses; each one defines one partition
of the DataFrame
.
Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash your external database systems.
url
- JDBC database url of the form jdbc:subprotocol:subname
table
- Name of the table in the external database.predicates
- Condition in the where clause for each partition.connectionProperties
- JDBC database connection arguments, a list of arbitrary string
tag/value. Normally at least a "user" and "password" property
should be included. "fetchsize" can be used to control the
number of rows per fetch.public Dataset<Row> json(String path)
DataFrame
.
See the documentation on the overloaded json()
method with varargs for more details.
path
- (undocumented)public Dataset<Row> json(scala.collection.Seq<String> paths)
DataFrame
.
JSON Lines (newline-delimited JSON) is supported by
default. For JSON (one record per file), set the multiLine
option to true.
This function goes through the input once to determine the input schema. If you know the schema in advance, use the version that specifies the schema to avoid the extra scan.
You can set the following JSON-specific options to deal with non-standard JSON files:
primitivesAsString
(default false
): infers all primitive values as a string typeprefersDecimal
(default false
): infers all floating-point values as a decimal
type. If the values do not fit in decimal, then it infers them as doubles.allowComments
(default false
): ignores Java/C++ style comment in JSON recordsallowUnquotedFieldNames
(default false
): allows unquoted JSON field namesallowSingleQuotes
(default true
): allows single quotes in addition to double quotes
allowNumericLeadingZeros
(default false
): allows leading zeros in numbers
(e.g. 00012)allowBackslashEscapingAnyCharacter
(default false
): allows accepting quoting of all
character using backslash quoting mechanismallowUnquotedControlChars
(default false
): allows JSON Strings to contain unquoted
control characters (ASCII characters with value less than 32, including tab and line feed
characters) or not.mode
(default PERMISSIVE
): allows a mode for dealing with corrupt records
during parsing.
PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a
field configured by columnNameOfCorruptRecord
, and sets other fields to null
. To
keep corrupt records, an user can set a string type field named
columnNameOfCorruptRecord
in an user-defined schema. If a schema does not have the
field, it drops corrupt records during parsing. When inferring a schema, it implicitly
adds a columnNameOfCorruptRecord
field in an output schema.DROPMALFORMED
: ignores the whole corrupted records.FAILFAST
: throws an exception when it meets corrupted records.columnNameOfCorruptRecord
(default is the value specified in
spark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string
created by PERMISSIVE
mode. This overrides spark.sql.columnNameOfCorruptRecord
.dateFormat
(default yyyy-MM-dd
): sets the string that indicates a date format.
Custom date formats follow the formats at java.text.SimpleDateFormat
. This applies to
date type.timestampFormat
(default yyyy-MM-dd'T'HH:mm:ss.SSSXXX
): sets the string that
indicates a timestamp format. Custom date formats follow the formats at
java.text.SimpleDateFormat
. This applies to timestamp type.multiLine
(default false
): parse one record, which may span multiple lines,
per filepaths
- (undocumented)public Dataset<Row> json(JavaRDD<String> jsonRDD)
JavaRDD[String]
storing JSON objects (JSON
Lines text format or newline-delimited JSON) and returns the result as
a DataFrame
.
Unless the schema is specified using schema
function, this function goes through the
input once to determine the input schema.
jsonRDD
- input RDD with one JSON object per recordpublic Dataset<Row> json(RDD<String> jsonRDD)
RDD[String]
storing JSON objects (JSON Lines
text format or newline-delimited JSON) and returns the result as a DataFrame
.
Unless the schema is specified using schema
function, this function goes through the
input once to determine the input schema.
jsonRDD
- input RDD with one JSON object per recordpublic Dataset<Row> json(Dataset<String> jsonDataset)
Dataset[String]
storing JSON objects (JSON Lines
text format or newline-delimited JSON) and returns the result as a DataFrame
.
Unless the schema is specified using schema
function, this function goes through the
input once to determine the input schema.
jsonDataset
- input Dataset with one JSON object per recordpublic Dataset<Row> csv(String path)
DataFrame
. See the documentation on the
other overloaded csv()
method for more details.
path
- (undocumented)public Dataset<Row> csv(Dataset<String> csvDataset)
Dataset[String]
storing CSV rows and returns the result as a DataFrame
.
If the schema is not specified using schema
function and inferSchema
option is enabled,
this function goes through the input once to determine the input schema.
If the schema is not specified using schema
function and inferSchema
option is disabled,
it determines the columns as string types and it reads only the first line to determine the
names and the number of fields.
csvDataset
- input Dataset with one CSV row per recordpublic Dataset<Row> csv(scala.collection.Seq<String> paths)
DataFrame
.
This function will go through the input once to determine the input schema if inferSchema
is enabled. To avoid going through the entire data once, disable inferSchema
option or
specify the schema explicitly using schema
.
You can set the following CSV-specific options to deal with CSV files:
sep
(default ,
): sets a single character as a separator for each
field and value.encoding
(default UTF-8
): decodes the CSV files by the given encoding
type.quote
(default "
): sets a single character used for escaping quoted values where
the separator can be part of the value. If you would like to turn off quotations, you need to
set not null
but an empty string. This behaviour is different from
com.databricks.spark.csv
.escape
(default \
): sets a single character used for escaping quotes inside
an already quoted value.charToEscapeQuoteEscaping
(default escape
or \0
): sets a single character used for
escaping the escape for the quote character. The default value is escape character when escape
and quote characters are different, \0
otherwise.comment
(default empty string): sets a single character used for skipping lines
beginning with this character. By default, it is disabled.header
(default false
): uses the first line as names of columns.inferSchema
(default false
): infers the input schema automatically from data. It
requires one extra pass over the data.ignoreLeadingWhiteSpace
(default false
): a flag indicating whether or not leading
whitespaces from values being read should be skipped.ignoreTrailingWhiteSpace
(default false
): a flag indicating whether or not trailing
whitespaces from values being read should be skipped.nullValue
(default empty string): sets the string representation of a null value. Since
2.0.1, this applies to all supported types including the string type.nanValue
(default NaN
): sets the string representation of a non-number" value.positiveInf
(default Inf
): sets the string representation of a positive infinity
value.negativeInf
(default -Inf
): sets the string representation of a negative infinity
value.dateFormat
(default yyyy-MM-dd
): sets the string that indicates a date format.
Custom date formats follow the formats at java.text.SimpleDateFormat
. This applies to
date type.timestampFormat
(default yyyy-MM-dd'T'HH:mm:ss.SSSXXX
): sets the string that
indicates a timestamp format. Custom date formats follow the formats at
java.text.SimpleDateFormat
. This applies to timestamp type.maxColumns
(default 20480
): defines a hard limit of how many columns
a record can have.maxCharsPerColumn
(default -1
): defines the maximum number of characters allowed
for any given value being read. By default, it is -1 meaning unlimited lengthmode
(default PERMISSIVE
): allows a mode for dealing with corrupt records
during parsing. It supports the following case-insensitive modes.
PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a
field configured by columnNameOfCorruptRecord
, and sets other fields to null
. To keep
corrupt records, an user can set a string type field named columnNameOfCorruptRecord
in an user-defined schema. If a schema does not have the field, it drops corrupt records
during parsing. A record with less/more tokens than schema is not a corrupted record to
CSV. When it meets a record having fewer tokens than the length of the schema, sets
null
to extra fields. When the record has more tokens than the length of the schema,
it drops extra tokens.DROPMALFORMED
: ignores the whole corrupted records.FAILFAST
: throws an exception when it meets corrupted records.columnNameOfCorruptRecord
(default is the value specified in
spark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string
created by PERMISSIVE
mode. This overrides spark.sql.columnNameOfCorruptRecord
.multiLine
(default false
): parse one record, which may span multiple lines.paths
- (undocumented)public Dataset<Row> parquet(String path)
DataFrame
. See the documentation
on the other overloaded parquet()
method for more details.
path
- (undocumented)public Dataset<Row> parquet(scala.collection.Seq<String> paths)
DataFrame
.
You can set the following Parquet-specific option(s) for reading Parquet files:
mergeSchema
(default is the value specified in spark.sql.parquet.mergeSchema
): sets
whether we should merge schemas collected from all Parquet part-files. This will override
spark.sql.parquet.mergeSchema
.paths
- (undocumented)public Dataset<Row> orc(String path)
DataFrame
.
path
- input pathpublic Dataset<Row> orc(scala.collection.Seq<String> paths)
DataFrame
.
paths
- input pathspublic Dataset<Row> table(String tableName)
DataFrame
.
tableName
- (undocumented)public Dataset<Row> text(String path)
DataFrame
whose schema starts with a string column named
"value", and followed by partitioned columns if there are any. See the documentation on
the other overloaded text()
method for more details.
path
- (undocumented)public Dataset<Row> text(scala.collection.Seq<String> paths)
DataFrame
whose schema starts with a string column named
"value", and followed by partitioned columns if there are any.
You can set the following text-specific option(s) for reading text files:
wholetext
( default false
): If true, read a file as a single row and not split by "\n".
Usage example:
// Scala:
spark.read.text("/path/to/spark/README.md")
// Java:
spark.read().text("/path/to/spark/README.md")
paths
- input pathspublic Dataset<String> textFile(String path)
Dataset
of String. See the documentation on the
other overloaded textFile()
method for more details.path
- (undocumented)public Dataset<String> textFile(scala.collection.Seq<String> paths)
Dataset
of String. The underlying schema of the Dataset
contains a single string column named "value".
If the directory structure of the text files contains partitioning information, those are
ignored in the resulting Dataset. To include partitioning information as columns, use text
.
You can set the following textFile-specific option(s) for reading text files:
wholetext
( default false
): If true, read a file as a single row and not split by "\n".
// Scala:
spark.read.textFile("/path/to/spark/README.md")
// Java:
spark.read().textFile("/path/to/spark/README.md")
paths
- input path