public class CountVectorizerModel extends Model<CountVectorizerModel> implements MLWritable
Constructor and Description |
---|
CountVectorizerModel(String[] vocabulary) |
CountVectorizerModel(String uid,
String[] vocabulary) |
Modifier and Type | Method and Description |
---|---|
static BooleanParam |
binary() |
BooleanParam |
binary()
Binary toggle to control the output vector values.
|
static Params |
clear(Param<?> param) |
CountVectorizerModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static <T> scala.Option<T> |
get(Param<T> param) |
static boolean |
getBinary() |
boolean |
getBinary() |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getInputCol() |
static double |
getMinDF() |
double |
getMinDF() |
static double |
getMinTF() |
double |
getMinTF() |
static <T> T |
getOrDefault(Param<T> param) |
static String |
getOutputCol() |
static Param<Object> |
getParam(String paramName) |
static int |
getVocabSize() |
int |
getVocabSize() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
hasParent() |
static Param<String> |
inputCol() |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static CountVectorizerModel |
load(String path) |
static DoubleParam |
minDF() |
DoubleParam |
minDF()
Specifies the minimum number of different documents a term must appear in to be included
in the vocabulary.
|
static DoubleParam |
minTF() |
DoubleParam |
minTF()
Filter to ignore rare words in a document.
|
static Param<String> |
outputCol() |
static Param<?>[] |
params() |
static void |
parent_$eq(Estimator<M> x$1) |
static Estimator<M> |
parent() |
static MLReader<CountVectorizerModel> |
read() |
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
CountVectorizerModel |
setBinary(boolean value) |
CountVectorizerModel |
setInputCol(String value) |
CountVectorizerModel |
setMinTF(double value) |
CountVectorizerModel |
setOutputCol(String value) |
static M |
setParent(Estimator<M> parent) |
static String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema)
Validates and transforms the input schema.
|
static IntParam |
vocabSize() |
IntParam |
vocabSize()
Max size of the vocabulary.
|
String[] |
vocabulary() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getInputCol, inputCol
getOutputCol, outputCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public CountVectorizerModel(String uid, String[] vocabulary)
public CountVectorizerModel(String[] vocabulary)
public static MLReader<CountVectorizerModel> read()
public static CountVectorizerModel load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static Estimator<M> parent()
public static void parent_$eq(Estimator<M> x$1)
public static M setParent(Estimator<M> parent)
public static boolean hasParent()
public static final Param<String> inputCol()
public static final String getInputCol()
public static final Param<String> outputCol()
public static final String getOutputCol()
public static IntParam vocabSize()
public static int getVocabSize()
public static DoubleParam minDF()
public static double getMinDF()
public static DoubleParam minTF()
public static double getMinTF()
public static BooleanParam binary()
public static boolean getBinary()
public static void save(String path) throws java.io.IOException
java.io.IOException
public String uid()
Identifiable
uid
in interface Identifiable
public String[] vocabulary()
public CountVectorizerModel setInputCol(String value)
public CountVectorizerModel setOutputCol(String value)
public CountVectorizerModel setMinTF(double value)
public CountVectorizerModel setBinary(boolean value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public CountVectorizerModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<CountVectorizerModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public IntParam vocabSize()
Default: 2^18^
public int getVocabSize()
public DoubleParam minDF()
Default: 1.0
public double getMinDF()
public StructType validateAndTransformSchema(StructType schema)
public DoubleParam minTF()
Note that the parameter is only used in transform of CountVectorizerModel
and does not
affect fitting.
Default: 1.0
public double getMinTF()
public BooleanParam binary()
public boolean getBinary()