public class LDA extends Estimator<LDAModel> implements DefaultParamsWritable
Terminology: - "term" = "word": an element of the vocabulary - "token": instance of a term appearing in a document - "topic": multinomial distribution over terms representing some concept - "document": one piece of text, corresponding to one row in the input data
Original LDA paper (journal version): Blei, Ng, and Jordan. "Latent Dirichlet Allocation." JMLR, 2003.
Input data (featuresCol):
LDA is given a collection of documents as input data, via the featuresCol parameter.
Each document is specified as a Vector
of length vocabSize, where each entry is the
count for the corresponding term (word) in the document. Feature transformers such as
Tokenizer
and CountVectorizer
can be useful for converting text to word count vectors.
Modifier and Type | Method and Description |
---|---|
static IntParam |
checkpointInterval() |
static Params |
clear(Param<?> param) |
LDA |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static DoubleArrayParam |
docConcentration() |
DoubleArrayParam |
docConcentration()
Concentration parameter (commonly named "alpha") for the prior placed on documents'
distributions over topics ("theta").
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static Param<String> |
featuresCol() |
LDAModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
static <T> scala.Option<T> |
get(Param<T> param) |
static int |
getCheckpointInterval() |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static double[] |
getDocConcentration() |
double[] |
getDocConcentration() |
static String |
getFeaturesCol() |
static int |
getK() |
int |
getK() |
static boolean |
getKeepLastCheckpoint() |
boolean |
getKeepLastCheckpoint() |
static double |
getLearningDecay() |
double |
getLearningDecay() |
static double |
getLearningOffset() |
double |
getLearningOffset() |
static int |
getMaxIter() |
Vector |
getOldDocConcentration()
Get docConcentration used by spark.mllib LDA
|
LDAOptimizer |
getOldOptimizer() |
double |
getOldTopicConcentration()
Get topicConcentration used by spark.mllib LDA
|
static boolean |
getOptimizeDocConcentration() |
boolean |
getOptimizeDocConcentration() |
static String |
getOptimizer() |
String |
getOptimizer() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static long |
getSeed() |
static double |
getSubsamplingRate() |
double |
getSubsamplingRate() |
static double |
getTopicConcentration() |
double |
getTopicConcentration() |
static String |
getTopicDistributionCol() |
String |
getTopicDistributionCol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static IntParam |
k() |
IntParam |
k()
Param for the number of topics (clusters) to infer.
|
static BooleanParam |
keepLastCheckpoint() |
BooleanParam |
keepLastCheckpoint()
For EM optimizer only:
optimizer = "em". |
static DoubleParam |
learningDecay() |
DoubleParam |
learningDecay()
For Online optimizer only:
optimizer = "online". |
static DoubleParam |
learningOffset() |
DoubleParam |
learningOffset()
For Online optimizer only:
optimizer = "online". |
static LDA |
load(String path) |
static IntParam |
maxIter() |
static BooleanParam |
optimizeDocConcentration() |
BooleanParam |
optimizeDocConcentration()
For Online optimizer only (currently):
optimizer = "online". |
static Param<String> |
optimizer() |
Param<String> |
optimizer()
Optimizer or inference algorithm used to estimate the LDA model.
|
static Param<?>[] |
params() |
static MLReader<LDA> |
read() |
static void |
save(String path) |
static LongParam |
seed() |
static <T> Params |
set(Param<T> param,
T value) |
LDA |
setCheckpointInterval(int value) |
LDA |
setDocConcentration(double value) |
LDA |
setDocConcentration(double[] value) |
LDA |
setFeaturesCol(String value)
The features for LDA should be a
Vector representing the word counts in a document. |
LDA |
setK(int value) |
LDA |
setKeepLastCheckpoint(boolean value) |
LDA |
setLearningDecay(double value) |
LDA |
setLearningOffset(double value) |
LDA |
setMaxIter(int value) |
LDA |
setOptimizeDocConcentration(boolean value) |
LDA |
setOptimizer(String value) |
LDA |
setSeed(long value) |
LDA |
setSubsamplingRate(double value) |
LDA |
setTopicConcentration(double value) |
LDA |
setTopicDistributionCol(String value) |
static DoubleParam |
subsamplingRate() |
DoubleParam |
subsamplingRate()
For Online optimizer only:
optimizer = "online". |
static String[] |
supportedOptimizers() |
String[] |
supportedOptimizers()
Supported values for Param
optimizer . |
static DoubleParam |
topicConcentration() |
DoubleParam |
topicConcentration()
Concentration parameter (commonly named "beta" or "eta") for the prior placed on topics'
distributions over terms.
|
static Param<String> |
topicDistributionCol() |
Param<String> |
topicDistributionCol()
Output column with estimates of the topic mixture distribution for each document (often called
"theta" in the literature).
|
static String |
toString() |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema)
Validates and transforms the input schema.
|
static MLWriter |
write() |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
featuresCol, getFeaturesCol
getMaxIter, maxIter
checkpointInterval, getCheckpointInterval
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
write
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static LDA load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static final Param<String> featuresCol()
public static final String getFeaturesCol()
public static final IntParam maxIter()
public static final int getMaxIter()
public static final LongParam seed()
public static final long getSeed()
public static final IntParam checkpointInterval()
public static final int getCheckpointInterval()
public static final IntParam k()
public static int getK()
public static final DoubleArrayParam docConcentration()
public static double[] getDocConcentration()
public static final DoubleParam topicConcentration()
public static double getTopicConcentration()
public static final String[] supportedOptimizers()
public static final Param<String> optimizer()
public static String getOptimizer()
public static final Param<String> topicDistributionCol()
public static String getTopicDistributionCol()
public static final DoubleParam learningOffset()
public static double getLearningOffset()
public static final DoubleParam learningDecay()
public static double getLearningDecay()
public static final DoubleParam subsamplingRate()
public static double getSubsamplingRate()
public static final BooleanParam optimizeDocConcentration()
public static boolean getOptimizeDocConcentration()
public static final BooleanParam keepLastCheckpoint()
public static boolean getKeepLastCheckpoint()
public static void save(String path) throws java.io.IOException
java.io.IOException
public static MLWriter write()
public String uid()
Identifiable
uid
in interface Identifiable
public LDA setFeaturesCol(String value)
Vector
representing the word counts in a document.
The vector should be of length vocabSize, with counts for each term (word).
value
- (undocumented)public LDA setMaxIter(int value)
public LDA setSeed(long value)
public LDA setCheckpointInterval(int value)
public LDA setK(int value)
public LDA setDocConcentration(double[] value)
public LDA setDocConcentration(double value)
public LDA setTopicConcentration(double value)
public LDA setOptimizer(String value)
public LDA setTopicDistributionCol(String value)
public LDA setLearningOffset(double value)
public LDA setLearningDecay(double value)
public LDA setSubsamplingRate(double value)
public LDA setOptimizeDocConcentration(boolean value)
public LDA setKeepLastCheckpoint(boolean value)
public LDA copy(ParamMap extra)
Params
defaultCopy()
.public LDAModel fit(Dataset<?> dataset)
Estimator
public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public IntParam k()
public int getK()
public DoubleArrayParam docConcentration()
This is the parameter to a Dirichlet distribution, where larger values mean more smoothing (more regularization).
If not set by the user, then docConcentration is set automatically. If set to
singleton vector [alpha], then alpha is replicated to a vector of length k in fitting.
Otherwise, the docConcentration
vector must be length k.
(default = automatic)
Optimizer-specific parameter settings: - EM - Currently only supports symmetric distributions, so all values in the vector should be the same. - Values should be greater than 1.0 - default = uniformly (50 / k) + 1, where 50/k is common in LDA libraries and +1 follows from Asuncion et al. (2009), who recommend a +1 adjustment for EM. - Online - Values should be greater than or equal to 0 - default = uniformly (1.0 / k), following the implementation from here.
public double[] getDocConcentration()
public Vector getOldDocConcentration()
public DoubleParam topicConcentration()
This is the parameter to a symmetric Dirichlet distribution.
Note: The topics' distributions over terms are called "beta" in the original LDA paper by Blei et al., but are called "phi" in many later papers such as Asuncion et al., 2009.
If not set by the user, then topicConcentration is set automatically. (default = automatic)
Optimizer-specific parameter settings: - EM - Value should be greater than 1.0 - default = 0.1 + 1, where 0.1 gives a small amount of smoothing and +1 follows Asuncion et al. (2009), who recommend a +1 adjustment for EM. - Online - Value should be greater than or equal to 0 - default = (1.0 / k), following the implementation from here.
public double getTopicConcentration()
public double getOldTopicConcentration()
public String[] supportedOptimizers()
optimizer
.public Param<String> optimizer()
For details, see the following papers: - Online LDA: Hoffman, Blei and Bach. "Online Learning for Latent Dirichlet Allocation." Neural Information Processing Systems, 2010. See here - EM: Asuncion et al. "On Smoothing and Inference for Topic Models." Uncertainty in Artificial Intelligence, 2009. See here
public String getOptimizer()
public Param<String> topicDistributionCol()
This uses a variational approximation following Hoffman et al. (2010), where the approximate distribution is called "gamma." Technically, this method returns this approximation "gamma" for each document.
public String getTopicDistributionCol()
public DoubleParam learningOffset()
optimizer
= "online".
A (positive) learning parameter that downweights early iterations. Larger values make early iterations count less. This is called "tau0" in the Online LDA paper (Hoffman et al., 2010) Default: 1024, following Hoffman et al.
public double getLearningOffset()
public DoubleParam learningDecay()
optimizer
= "online".
Learning rate, set as an exponential decay rate. This should be between (0.5, 1.0] to guarantee asymptotic convergence. This is called "kappa" in the Online LDA paper (Hoffman et al., 2010). Default: 0.51, based on Hoffman et al.
public double getLearningDecay()
public DoubleParam subsamplingRate()
optimizer
= "online".
Fraction of the corpus to be sampled and used in each iteration of mini-batch gradient descent, in range (0, 1].
Note that this should be adjusted in synch with LDA.maxIter
so the entire corpus is used. Specifically, set both so that
maxIterations * miniBatchFraction greater than or equal to 1.
Note: This is the same as the miniBatchFraction
parameter in
OnlineLDAOptimizer
.
Default: 0.05, i.e., 5% of total documents.
public double getSubsamplingRate()
public BooleanParam optimizeDocConcentration()
optimizer
= "online".
Indicates whether the docConcentration (Dirichlet parameter for document-topic distribution) will be optimized during training. Setting this to true will make the model more expressive and fit the training data better. Default: false
public boolean getOptimizeDocConcentration()
public BooleanParam keepLastCheckpoint()
optimizer
= "em".
If using checkpointing, this indicates whether to keep the last checkpoint. If false, then the checkpoint will be deleted. Deleting the checkpoint can cause failures if a data partition is lost, so set this bit with care. Note that checkpoints will be cleaned up via reference counting, regardless.
See DistributedLDAModel.getCheckpointFiles
for getting remaining checkpoints and
DistributedLDAModel.deleteCheckpointFiles
for removing remaining checkpoints.
Default: true
public boolean getKeepLastCheckpoint()
public StructType validateAndTransformSchema(StructType schema)
schema
- input schemapublic LDAOptimizer getOldOptimizer()