public abstract class Predictor<FeaturesType,Learner extends Predictor<FeaturesType,Learner,M>,M extends PredictionModel<FeaturesType,M>> extends Estimator<M>
fit()
. If this predictor supports
weights, it accepts all NumericType weights, which will be automatically casted to DoubleType
in fit()
.
Constructor and Description |
---|
Predictor() |
Modifier and Type | Method and Description |
---|---|
abstract Learner |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
M |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
Learner |
setFeaturesCol(String value) |
Learner |
setLabelCol(String value) |
Learner |
setPredictionCol(String value) |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getLabelCol, labelCol
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString, uid
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public Learner setLabelCol(String value)
public Learner setFeaturesCol(String value)
public Learner setPredictionCol(String value)
public M fit(Dataset<?> dataset)
Estimator
fit
in class Estimator<M extends PredictionModel<FeaturesType,M>>
dataset
- (undocumented)public abstract Learner copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Estimator<M extends PredictionModel<FeaturesType,M>>
extra
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema
- input schemafitting
- whether this is in fittingfeaturesDataType
- SQL DataType for FeaturesType.
E.g., VectorUDT
for vector features.