public class PartitionPruningRDD<T> extends RDD<T>
Constructor and Description |
---|
PartitionPruningRDD(RDD<T> prev,
scala.Function1<Object,Object> partitionFilterFunc,
scala.reflect.ClassTag<T> evidence$1) |
Modifier and Type | Method and Description |
---|---|
static RDD<T> |
$plus$plus(RDD<T> other) |
static <U> U |
aggregate(U zeroValue,
scala.Function2<U,T,U> seqOp,
scala.Function2<U,U,U> combOp,
scala.reflect.ClassTag<U> evidence$30) |
static RDD<T> |
cache() |
static <U> RDD<scala.Tuple2<T,U>> |
cartesian(RDD<U> other,
scala.reflect.ClassTag<U> evidence$5) |
static void |
checkpoint() |
static RDD<T> |
coalesce(int numPartitions,
boolean shuffle,
scala.Option<PartitionCoalescer> partitionCoalescer,
scala.math.Ordering<T> ord) |
static boolean |
coalesce$default$2() |
static scala.Option<PartitionCoalescer> |
coalesce$default$3() |
static scala.math.Ordering<T> |
coalesce$default$4(int numPartitions,
boolean shuffle,
scala.Option<PartitionCoalescer> partitionCoalescer) |
static Object |
collect() |
static <U> RDD<U> |
collect(scala.PartialFunction<T,U> f,
scala.reflect.ClassTag<U> evidence$29) |
scala.collection.Iterator<T> |
compute(Partition split,
TaskContext context)
:: DeveloperApi ::
Implemented by subclasses to compute a given partition.
|
static SparkContext |
context() |
static long |
count() |
static PartialResult<BoundedDouble> |
countApprox(long timeout,
double confidence) |
static double |
countApprox$default$2() |
static long |
countApproxDistinct(double relativeSD) |
static long |
countApproxDistinct(int p,
int sp) |
static double |
countApproxDistinct$default$1() |
static scala.collection.Map<T,Object> |
countByValue(scala.math.Ordering<T> ord) |
static scala.math.Ordering<T> |
countByValue$default$1() |
static PartialResult<scala.collection.Map<T,BoundedDouble>> |
countByValueApprox(long timeout,
double confidence,
scala.math.Ordering<T> ord) |
static double |
countByValueApprox$default$2() |
static scala.math.Ordering<T> |
countByValueApprox$default$3(long timeout,
double confidence) |
static <T> PartitionPruningRDD<T> |
create(RDD<T> rdd,
scala.Function1<Object,Object> partitionFilterFunc)
Create a PartitionPruningRDD.
|
static scala.collection.Seq<Dependency<?>> |
dependencies() |
static RDD<T> |
distinct() |
static RDD<T> |
distinct(int numPartitions,
scala.math.Ordering<T> ord) |
static scala.math.Ordering<T> |
distinct$default$2(int numPartitions) |
static RDD<T> |
filter(scala.Function1<T,Object> f) |
static T |
first() |
static <U> RDD<U> |
flatMap(scala.Function1<T,scala.collection.TraversableOnce<U>> f,
scala.reflect.ClassTag<U> evidence$4) |
static T |
fold(T zeroValue,
scala.Function2<T,T,T> op) |
static void |
foreach(scala.Function1<T,scala.runtime.BoxedUnit> f) |
static void |
foreachPartition(scala.Function1<scala.collection.Iterator<T>,scala.runtime.BoxedUnit> f) |
static scala.Option<String> |
getCheckpointFile() |
static int |
getNumPartitions() |
static StorageLevel |
getStorageLevel() |
static RDD<Object> |
glom() |
static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> |
groupBy(scala.Function1<T,K> f,
scala.reflect.ClassTag<K> kt) |
static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> |
groupBy(scala.Function1<T,K> f,
int numPartitions,
scala.reflect.ClassTag<K> kt) |
static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> |
groupBy(scala.Function1<T,K> f,
Partitioner p,
scala.reflect.ClassTag<K> kt,
scala.math.Ordering<K> ord) |
static <K> scala.runtime.Null$ |
groupBy$default$4(scala.Function1<T,K> f,
Partitioner p) |
static int |
id() |
static RDD<T> |
intersection(RDD<T> other) |
static RDD<T> |
intersection(RDD<T> other,
int numPartitions) |
static RDD<T> |
intersection(RDD<T> other,
Partitioner partitioner,
scala.math.Ordering<T> ord) |
static scala.math.Ordering<T> |
intersection$default$3(RDD<T> other,
Partitioner partitioner) |
static boolean |
isCheckpointed() |
static boolean |
isEmpty() |
static scala.collection.Iterator<T> |
iterator(Partition split,
TaskContext context) |
static <K> RDD<scala.Tuple2<K,T>> |
keyBy(scala.Function1<T,K> f) |
static RDD<T> |
localCheckpoint() |
static <U> RDD<U> |
map(scala.Function1<T,U> f,
scala.reflect.ClassTag<U> evidence$3) |
static <U> RDD<U> |
mapPartitions(scala.Function1<scala.collection.Iterator<T>,scala.collection.Iterator<U>> f,
boolean preservesPartitioning,
scala.reflect.ClassTag<U> evidence$6) |
static <U> boolean |
mapPartitions$default$2() |
static <U> boolean |
mapPartitionsInternal$default$2() |
static <U> RDD<U> |
mapPartitionsWithIndex(scala.Function2<Object,scala.collection.Iterator<T>,scala.collection.Iterator<U>> f,
boolean preservesPartitioning,
scala.reflect.ClassTag<U> evidence$9) |
static <U> boolean |
mapPartitionsWithIndex$default$2() |
static <U> boolean |
mapPartitionsWithIndexInternal$default$2() |
static T |
max(scala.math.Ordering<T> ord) |
static T |
min(scala.math.Ordering<T> ord) |
static void |
name_$eq(String x$1) |
static String |
name() |
static scala.Option<Partitioner> |
partitioner() |
static Partition[] |
partitions() |
static RDD<T> |
persist() |
static RDD<T> |
persist(StorageLevel newLevel) |
static RDD<String> |
pipe(scala.collection.Seq<String> command,
scala.collection.Map<String,String> env,
scala.Function1<scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> printPipeContext,
scala.Function2<T,scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> printRDDElement,
boolean separateWorkingDir,
int bufferSize,
String encoding) |
static RDD<String> |
pipe(String command) |
static RDD<String> |
pipe(String command,
scala.collection.Map<String,String> env) |
static scala.collection.Map<String,String> |
pipe$default$2() |
static scala.Function1<scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> |
pipe$default$3() |
static scala.Function2<T,scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> |
pipe$default$4() |
static boolean |
pipe$default$5() |
static int |
pipe$default$6() |
static String |
pipe$default$7() |
static scala.collection.Seq<String> |
preferredLocations(Partition split) |
static RDD<T>[] |
randomSplit(double[] weights,
long seed) |
static long |
randomSplit$default$2() |
static T |
reduce(scala.Function2<T,T,T> f) |
static RDD<T> |
repartition(int numPartitions,
scala.math.Ordering<T> ord) |
static scala.math.Ordering<T> |
repartition$default$2(int numPartitions) |
static RDD<T> |
sample(boolean withReplacement,
double fraction,
long seed) |
static long |
sample$default$3() |
static void |
saveAsObjectFile(String path) |
static void |
saveAsTextFile(String path) |
static void |
saveAsTextFile(String path,
Class<? extends org.apache.hadoop.io.compress.CompressionCodec> codec) |
static RDD<T> |
setName(String _name) |
static <K> RDD<T> |
sortBy(scala.Function1<T,K> f,
boolean ascending,
int numPartitions,
scala.math.Ordering<K> ord,
scala.reflect.ClassTag<K> ctag) |
static <K> boolean |
sortBy$default$2() |
static <K> int |
sortBy$default$3() |
static SparkContext |
sparkContext() |
static RDD<T> |
subtract(RDD<T> other) |
static RDD<T> |
subtract(RDD<T> other,
int numPartitions) |
static RDD<T> |
subtract(RDD<T> other,
Partitioner p,
scala.math.Ordering<T> ord) |
static scala.math.Ordering<T> |
subtract$default$3(RDD<T> other,
Partitioner p) |
static Object |
take(int num) |
static Object |
takeOrdered(int num,
scala.math.Ordering<T> ord) |
static Object |
takeSample(boolean withReplacement,
int num,
long seed) |
static long |
takeSample$default$3() |
static String |
toDebugString() |
static JavaRDD<T> |
toJavaRDD() |
static scala.collection.Iterator<T> |
toLocalIterator() |
static Object |
top(int num,
scala.math.Ordering<T> ord) |
static String |
toString() |
static <U> U |
treeAggregate(U zeroValue,
scala.Function2<U,T,U> seqOp,
scala.Function2<U,U,U> combOp,
int depth,
scala.reflect.ClassTag<U> evidence$31) |
static <U> int |
treeAggregate$default$4(U zeroValue) |
static T |
treeReduce(scala.Function2<T,T,T> f,
int depth) |
static int |
treeReduce$default$2() |
static RDD<T> |
union(RDD<T> other) |
static RDD<T> |
unpersist(boolean blocking) |
static boolean |
unpersist$default$1() |
static <U> RDD<scala.Tuple2<T,U>> |
zip(RDD<U> other,
scala.reflect.ClassTag<U> evidence$10) |
static <B,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
boolean preservesPartitioning,
scala.Function2<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$11,
scala.reflect.ClassTag<V> evidence$12) |
static <B,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
scala.Function2<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$13,
scala.reflect.ClassTag<V> evidence$14) |
static <B,C,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
RDD<C> rdd3,
boolean preservesPartitioning,
scala.Function3<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$15,
scala.reflect.ClassTag<C> evidence$16,
scala.reflect.ClassTag<V> evidence$17) |
static <B,C,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
RDD<C> rdd3,
scala.Function3<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$18,
scala.reflect.ClassTag<C> evidence$19,
scala.reflect.ClassTag<V> evidence$20) |
static <B,C,D,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
RDD<C> rdd3,
RDD<D> rdd4,
boolean preservesPartitioning,
scala.Function4<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<D>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$21,
scala.reflect.ClassTag<C> evidence$22,
scala.reflect.ClassTag<D> evidence$23,
scala.reflect.ClassTag<V> evidence$24) |
static <B,C,D,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
RDD<C> rdd3,
RDD<D> rdd4,
scala.Function4<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<D>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$25,
scala.reflect.ClassTag<C> evidence$26,
scala.reflect.ClassTag<D> evidence$27,
scala.reflect.ClassTag<V> evidence$28) |
static RDD<scala.Tuple2<T,Object>> |
zipWithIndex() |
static RDD<scala.Tuple2<T,Object>> |
zipWithUniqueId() |
aggregate, cache, cartesian, checkpoint, coalesce, collect, collect, context, count, countApprox, countApproxDistinct, countApproxDistinct, countByValue, countByValueApprox, dependencies, distinct, distinct, doubleRDDToDoubleRDDFunctions, filter, first, flatMap, fold, foreach, foreachPartition, getCheckpointFile, getNumPartitions, getStorageLevel, glom, groupBy, groupBy, groupBy, id, intersection, intersection, intersection, isCheckpointed, isEmpty, iterator, keyBy, localCheckpoint, map, mapPartitions, mapPartitionsWithIndex, max, min, name, numericRDDToDoubleRDDFunctions, partitioner, partitions, persist, persist, pipe, pipe, pipe, preferredLocations, randomSplit, rddToAsyncRDDActions, rddToOrderedRDDFunctions, rddToPairRDDFunctions, rddToSequenceFileRDDFunctions, reduce, repartition, sample, saveAsObjectFile, saveAsTextFile, saveAsTextFile, setName, sortBy, sparkContext, subtract, subtract, subtract, take, takeOrdered, takeSample, toDebugString, toJavaRDD, toLocalIterator, top, toString, treeAggregate, treeReduce, union, unpersist, zip, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipWithIndex, zipWithUniqueId
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static <T> PartitionPruningRDD<T> create(RDD<T> rdd, scala.Function1<Object,Object> partitionFilterFunc)
rdd
- (undocumented)partitionFilterFunc
- (undocumented)public static scala.Option<Partitioner> partitioner()
public static SparkContext sparkContext()
public static int id()
public static String name()
public static void name_$eq(String x$1)
public static RDD<T> setName(String _name)
public static RDD<T> persist(StorageLevel newLevel)
public static RDD<T> persist()
public static RDD<T> cache()
public static RDD<T> unpersist(boolean blocking)
public static StorageLevel getStorageLevel()
public static final scala.collection.Seq<Dependency<?>> dependencies()
public static final Partition[] partitions()
public static final int getNumPartitions()
public static final scala.collection.Seq<String> preferredLocations(Partition split)
public static final scala.collection.Iterator<T> iterator(Partition split, TaskContext context)
public static <U> RDD<U> map(scala.Function1<T,U> f, scala.reflect.ClassTag<U> evidence$3)
public static <U> RDD<U> flatMap(scala.Function1<T,scala.collection.TraversableOnce<U>> f, scala.reflect.ClassTag<U> evidence$4)
public static RDD<T> filter(scala.Function1<T,Object> f)
public static RDD<T> distinct(int numPartitions, scala.math.Ordering<T> ord)
public static RDD<T> distinct()
public static RDD<T> repartition(int numPartitions, scala.math.Ordering<T> ord)
public static RDD<T> coalesce(int numPartitions, boolean shuffle, scala.Option<PartitionCoalescer> partitionCoalescer, scala.math.Ordering<T> ord)
public static RDD<T> sample(boolean withReplacement, double fraction, long seed)
public static RDD<T>[] randomSplit(double[] weights, long seed)
public static Object takeSample(boolean withReplacement, int num, long seed)
public static <K> RDD<T> sortBy(scala.Function1<T,K> f, boolean ascending, int numPartitions, scala.math.Ordering<K> ord, scala.reflect.ClassTag<K> ctag)
public static RDD<T> intersection(RDD<T> other, Partitioner partitioner, scala.math.Ordering<T> ord)
public static RDD<Object> glom()
public static <U> RDD<scala.Tuple2<T,U>> cartesian(RDD<U> other, scala.reflect.ClassTag<U> evidence$5)
public static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> groupBy(scala.Function1<T,K> f, scala.reflect.ClassTag<K> kt)
public static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> groupBy(scala.Function1<T,K> f, int numPartitions, scala.reflect.ClassTag<K> kt)
public static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> groupBy(scala.Function1<T,K> f, Partitioner p, scala.reflect.ClassTag<K> kt, scala.math.Ordering<K> ord)
public static RDD<String> pipe(String command)
public static RDD<String> pipe(String command, scala.collection.Map<String,String> env)
public static RDD<String> pipe(scala.collection.Seq<String> command, scala.collection.Map<String,String> env, scala.Function1<scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> printPipeContext, scala.Function2<T,scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> printRDDElement, boolean separateWorkingDir, int bufferSize, String encoding)
public static <U> RDD<U> mapPartitions(scala.Function1<scala.collection.Iterator<T>,scala.collection.Iterator<U>> f, boolean preservesPartitioning, scala.reflect.ClassTag<U> evidence$6)
public static <U> RDD<U> mapPartitionsWithIndex(scala.Function2<Object,scala.collection.Iterator<T>,scala.collection.Iterator<U>> f, boolean preservesPartitioning, scala.reflect.ClassTag<U> evidence$9)
public static <U> RDD<scala.Tuple2<T,U>> zip(RDD<U> other, scala.reflect.ClassTag<U> evidence$10)
public static <B,V> RDD<V> zipPartitions(RDD<B> rdd2, boolean preservesPartitioning, scala.Function2<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$11, scala.reflect.ClassTag<V> evidence$12)
public static <B,V> RDD<V> zipPartitions(RDD<B> rdd2, scala.Function2<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$13, scala.reflect.ClassTag<V> evidence$14)
public static <B,C,V> RDD<V> zipPartitions(RDD<B> rdd2, RDD<C> rdd3, boolean preservesPartitioning, scala.Function3<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$15, scala.reflect.ClassTag<C> evidence$16, scala.reflect.ClassTag<V> evidence$17)
public static <B,C,V> RDD<V> zipPartitions(RDD<B> rdd2, RDD<C> rdd3, scala.Function3<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$18, scala.reflect.ClassTag<C> evidence$19, scala.reflect.ClassTag<V> evidence$20)
public static <B,C,D,V> RDD<V> zipPartitions(RDD<B> rdd2, RDD<C> rdd3, RDD<D> rdd4, boolean preservesPartitioning, scala.Function4<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<D>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$21, scala.reflect.ClassTag<C> evidence$22, scala.reflect.ClassTag<D> evidence$23, scala.reflect.ClassTag<V> evidence$24)
public static <B,C,D,V> RDD<V> zipPartitions(RDD<B> rdd2, RDD<C> rdd3, RDD<D> rdd4, scala.Function4<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<D>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$25, scala.reflect.ClassTag<C> evidence$26, scala.reflect.ClassTag<D> evidence$27, scala.reflect.ClassTag<V> evidence$28)
public static void foreach(scala.Function1<T,scala.runtime.BoxedUnit> f)
public static void foreachPartition(scala.Function1<scala.collection.Iterator<T>,scala.runtime.BoxedUnit> f)
public static Object collect()
public static scala.collection.Iterator<T> toLocalIterator()
public static <U> RDD<U> collect(scala.PartialFunction<T,U> f, scala.reflect.ClassTag<U> evidence$29)
public static RDD<T> subtract(RDD<T> other, Partitioner p, scala.math.Ordering<T> ord)
public static T reduce(scala.Function2<T,T,T> f)
public static T treeReduce(scala.Function2<T,T,T> f, int depth)
public static T fold(T zeroValue, scala.Function2<T,T,T> op)
public static <U> U aggregate(U zeroValue, scala.Function2<U,T,U> seqOp, scala.Function2<U,U,U> combOp, scala.reflect.ClassTag<U> evidence$30)
public static <U> U treeAggregate(U zeroValue, scala.Function2<U,T,U> seqOp, scala.Function2<U,U,U> combOp, int depth, scala.reflect.ClassTag<U> evidence$31)
public static long count()
public static PartialResult<BoundedDouble> countApprox(long timeout, double confidence)
public static scala.collection.Map<T,Object> countByValue(scala.math.Ordering<T> ord)
public static PartialResult<scala.collection.Map<T,BoundedDouble>> countByValueApprox(long timeout, double confidence, scala.math.Ordering<T> ord)
public static long countApproxDistinct(int p, int sp)
public static long countApproxDistinct(double relativeSD)
public static RDD<scala.Tuple2<T,Object>> zipWithIndex()
public static RDD<scala.Tuple2<T,Object>> zipWithUniqueId()
public static Object take(int num)
public static T first()
public static Object top(int num, scala.math.Ordering<T> ord)
public static Object takeOrdered(int num, scala.math.Ordering<T> ord)
public static T max(scala.math.Ordering<T> ord)
public static T min(scala.math.Ordering<T> ord)
public static boolean isEmpty()
public static void saveAsTextFile(String path)
public static void saveAsTextFile(String path, Class<? extends org.apache.hadoop.io.compress.CompressionCodec> codec)
public static void saveAsObjectFile(String path)
public static <K> RDD<scala.Tuple2<K,T>> keyBy(scala.Function1<T,K> f)
public static void checkpoint()
public static RDD<T> localCheckpoint()
public static boolean isCheckpointed()
public static scala.Option<String> getCheckpointFile()
public static SparkContext context()
public static String toDebugString()
public static String toString()
public static JavaRDD<T> toJavaRDD()
public static long sample$default$3()
public static <U> boolean mapPartitionsWithIndex$default$2()
public static boolean unpersist$default$1()
public static scala.math.Ordering<T> distinct$default$2(int numPartitions)
public static boolean coalesce$default$2()
public static scala.Option<PartitionCoalescer> coalesce$default$3()
public static scala.math.Ordering<T> coalesce$default$4(int numPartitions, boolean shuffle, scala.Option<PartitionCoalescer> partitionCoalescer)
public static scala.math.Ordering<T> repartition$default$2(int numPartitions)
public static scala.math.Ordering<T> subtract$default$3(RDD<T> other, Partitioner p)
public static scala.math.Ordering<T> intersection$default$3(RDD<T> other, Partitioner partitioner)
public static long randomSplit$default$2()
public static <K> boolean sortBy$default$2()
public static <K> int sortBy$default$3()
public static <U> boolean mapPartitions$default$2()
public static <K> scala.runtime.Null$ groupBy$default$4(scala.Function1<T,K> f, Partitioner p)
public static scala.collection.Map<String,String> pipe$default$2()
public static scala.Function1<scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> pipe$default$3()
public static scala.Function2<T,scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> pipe$default$4()
public static boolean pipe$default$5()
public static int pipe$default$6()
public static String pipe$default$7()
public static int treeReduce$default$2()
public static <U> int treeAggregate$default$4(U zeroValue)
public static double countApprox$default$2()
public static scala.math.Ordering<T> countByValue$default$1()
public static double countByValueApprox$default$2()
public static scala.math.Ordering<T> countByValueApprox$default$3(long timeout, double confidence)
public static long takeSample$default$3()
public static double countApproxDistinct$default$1()
public static <U> boolean mapPartitionsWithIndexInternal$default$2()
public static <U> boolean mapPartitionsInternal$default$2()
public scala.collection.Iterator<T> compute(Partition split, TaskContext context)
RDD