public class FPGrowthModel extends Model<FPGrowthModel> implements MLWritable
param: freqItemsets frequent itemsets in the format of DataFrame("items"[Array], "freq"[Long])
Modifier and Type | Method and Description |
---|---|
Dataset<Row> |
associationRules()
Get association rules fitted using the minConfidence.
|
static Params |
clear(Param<?> param) |
FPGrowthModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
Dataset<Row> |
freqItemsets() |
static <T> scala.Option<T> |
get(Param<T> param) |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getItemsCol() |
String |
getItemsCol() |
static double |
getMinConfidence() |
double |
getMinConfidence() |
static double |
getMinSupport() |
double |
getMinSupport() |
static int |
getNumPartitions() |
int |
getNumPartitions() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
hasParent() |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static Param<String> |
itemsCol() |
Param<String> |
itemsCol()
Items column name.
|
static FPGrowthModel |
load(String path) |
static DoubleParam |
minConfidence() |
DoubleParam |
minConfidence()
Minimal confidence for generating Association Rule.
|
static DoubleParam |
minSupport() |
DoubleParam |
minSupport()
Minimal support level of the frequent pattern.
|
static IntParam |
numPartitions() |
IntParam |
numPartitions()
Number of partitions (at least 1) used by parallel FP-growth.
|
static Param<?>[] |
params() |
static void |
parent_$eq(Estimator<M> x$1) |
static Estimator<M> |
parent() |
static Param<String> |
predictionCol() |
static MLReader<FPGrowthModel> |
read() |
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
FPGrowthModel |
setItemsCol(String value) |
FPGrowthModel |
setMinConfidence(double value) |
static M |
setParent(Estimator<M> parent) |
FPGrowthModel |
setPredictionCol(String value) |
static String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
The transform method first generates the association rules according to the frequent itemsets.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema)
Validates and transforms the input schema.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getPredictionCol, predictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static MLReader<FPGrowthModel> read()
public static FPGrowthModel load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static Estimator<M> parent()
public static void parent_$eq(Estimator<M> x$1)
public static M setParent(Estimator<M> parent)
public static boolean hasParent()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static Param<String> itemsCol()
public static String getItemsCol()
public static DoubleParam minSupport()
public static double getMinSupport()
public static IntParam numPartitions()
public static int getNumPartitions()
public static DoubleParam minConfidence()
public static double getMinConfidence()
public static void save(String path) throws java.io.IOException
java.io.IOException
public String uid()
Identifiable
uid
in interface Identifiable
public FPGrowthModel setMinConfidence(double value)
public FPGrowthModel setItemsCol(String value)
public FPGrowthModel setPredictionCol(String value)
public Dataset<Row> associationRules()
public Dataset<Row> transform(Dataset<?> dataset)
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public FPGrowthModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<FPGrowthModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public Param<String> itemsCol()
public String getItemsCol()
public DoubleParam minSupport()
public double getMinSupport()
public IntParam numPartitions()
public int getNumPartitions()
public DoubleParam minConfidence()
public double getMinConfidence()
public StructType validateAndTransformSchema(StructType schema)
schema
- input schema