pyspark.sql.functions.aes_encrypt¶
-
pyspark.sql.functions.
aes_encrypt
(input: ColumnOrName, key: ColumnOrName, mode: Optional[ColumnOrName] = None, padding: Optional[ColumnOrName] = None, iv: Optional[ColumnOrName] = None, aad: Optional[ColumnOrName] = None) → pyspark.sql.column.Column[source]¶ Returns an encrypted value of input using AES in given mode with the specified padding. Key lengths of 16, 24 and 32 bits are supported. Supported combinations of (mode, padding) are (‘ECB’, ‘PKCS’), (‘GCM’, ‘NONE’) and (‘CBC’, ‘PKCS’). Optional initialization vectors (IVs) are only supported for CBC and GCM modes. These must be 16 bytes for CBC and 12 bytes for GCM. If not provided, a random vector will be generated and prepended to the output. Optional additional authenticated data (AAD) is only supported for GCM. If provided for encryption, the identical AAD value must be provided for decryption. The default mode is GCM.
New in version 3.5.0.
- Parameters
- input
Column
or str The binary value to encrypt.
- key
Column
or str The passphrase to use to encrypt the data.
- mode
Column
or str, optional Specifies which block cipher mode should be used to encrypt messages. Valid modes: ECB, GCM, CBC.
- padding
Column
or str, optional Specifies how to pad messages whose length is not a multiple of the block size. Valid values: PKCS, NONE, DEFAULT. The DEFAULT padding means PKCS for ECB, NONE for GCM and PKCS for CBC.
- iv
Column
or str, optional Optional initialization vector. Only supported for CBC and GCM modes. Valid values: None or “”. 16-byte array for CBC mode. 12-byte array for GCM mode.
- aad
Column
or str, optional Optional additional authenticated data. Only supported for GCM mode. This can be any free-form input and must be provided for both encryption and decryption.
- input
Examples
>>> df = spark.createDataFrame([( ... "Spark", "abcdefghijklmnop12345678ABCDEFGH", "GCM", "DEFAULT", ... "000000000000000000000000", "This is an AAD mixed into the input",)], ... ["input", "key", "mode", "padding", "iv", "aad"] ... ) >>> df.select(base64(aes_encrypt( ... df.input, df.key, df.mode, df.padding, to_binary(df.iv, lit("hex")), df.aad) ... ).alias('r')).collect() [Row(r='AAAAAAAAAAAAAAAAQiYi+sTLm7KD9UcZ2nlRdYDe/PX4')]
>>> df.select(base64(aes_encrypt( ... df.input, df.key, df.mode, df.padding, to_binary(df.iv, lit("hex"))) ... ).alias('r')).collect() [Row(r='AAAAAAAAAAAAAAAAQiYi+sRNYDAOTjdSEcYBFsAWPL1f')]
>>> df = spark.createDataFrame([( ... "Spark SQL", "1234567890abcdef", "ECB", "PKCS",)], ... ["input", "key", "mode", "padding"] ... ) >>> df.select(aes_decrypt(aes_encrypt(df.input, df.key, df.mode, df.padding), ... df.key, df.mode, df.padding).alias('r') ... ).collect() [Row(r=bytearray(b'Spark SQL'))]
>>> df = spark.createDataFrame([( ... "Spark SQL", "0000111122223333", "ECB",)], ... ["input", "key", "mode"] ... ) >>> df.select(aes_decrypt(aes_encrypt(df.input, df.key, df.mode), ... df.key, df.mode).alias('r') ... ).collect() [Row(r=bytearray(b'Spark SQL'))]
>>> df = spark.createDataFrame([( ... "Spark SQL", "abcdefghijklmnop",)], ... ["input", "key"] ... ) >>> df.select(aes_decrypt( ... unbase64(base64(aes_encrypt(df.input, df.key))), df.key ... ).cast("STRING").alias('r')).collect() [Row(r='Spark SQL')]