pyspark.pandas.
isnull
Detect missing values for an array-like object.
This function takes a scalar or array-like object and indicates whether values are missing (NaN in numeric arrays, None or NaN in object arrays).
NaN
None
Object to check for null or missing values.
For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is missing.
See also
Series.isna
Detect missing values in a Series.
Series.isnull
DataFrame.isna
Detect missing values in a DataFrame.
DataFrame.isnull
Index.isna
Detect missing values in an Index.
Index.isnull
Examples
Scalar arguments (including strings) result in a scalar boolean.
>>> ps.isna('dog') False
>>> ps.isna(np.nan) True
ndarrays result in an ndarray of booleans.
>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> ps.isna(array) array([[False, True, False], [False, False, True]])
For Series and DataFrame, the same type is returned, containing booleans.
>>> df = ps.DataFrame({'a': ['ant', 'bee', 'cat'], 'b': ['dog', None, 'fly']}) >>> df a b 0 ant dog 1 bee None 2 cat fly
>>> ps.isna(df) a b 0 False False 1 False True 2 False False
>>> ps.isnull(df.b) 0 False 1 True 2 False Name: b, dtype: bool