Object

org.apache.spark.ml.stat

KolmogorovSmirnovTest

Related Doc: package stat

Permalink

object KolmogorovSmirnovTest

:: Experimental ::

Conduct the two-sided Kolmogorov Smirnov (KS) test for data sampled from a continuous distribution. By comparing the largest difference between the empirical cumulative distribution of the sample data and the theoretical distribution we can provide a test for the the null hypothesis that the sample data comes from that theoretical distribution. For more information on KS Test:

Annotations
@Experimental() @Since( "2.4.0" )
Source
KolmogorovSmirnovTest.scala
See also

Kolmogorov-Smirnov test (Wikipedia)

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. KolmogorovSmirnovTest
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  16. def test(dataset: Dataset[_], sampleCol: String, distName: String, params: Double*): DataFrame

    Permalink

    Convenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality.

    Convenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality. Currently supports the normal distribution, taking as parameters the mean and standard deviation.

    dataset

    A Dataset or a DataFrame containing the sample of data to test

    sampleCol

    Name of sample column in dataset, of any numerical type

    distName

    a String name for a theoretical distribution, currently only support "norm".

    params

    Double* specifying the parameters to be used for the theoretical distribution. For "norm" distribution, the parameters includes mean and variance.

    returns

    DataFrame containing the test result for the input sampled data. This DataFrame will contain a single Row with the following fields:

    • pValue: Double
    • statistic: Double
    Annotations
    @Since( "2.4.0" ) @varargs()
  17. def test(dataset: Dataset[_], sampleCol: String, cdf: Function[Double, Double]): DataFrame

    Permalink

    Java-friendly version of test(dataset: DataFrame, sampleCol: String, cdf: Double => Double)

    Java-friendly version of test(dataset: DataFrame, sampleCol: String, cdf: Double => Double)

    Annotations
    @Since( "2.4.0" )
  18. def test(dataset: Dataset[_], sampleCol: String, cdf: (Double) ⇒ Double): DataFrame

    Permalink

    Conduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a continuous distribution.

    Conduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a continuous distribution. By comparing the largest difference between the empirical cumulative distribution of the sample data and the theoretical distribution we can provide a test for the the null hypothesis that the sample data comes from that theoretical distribution.

    dataset

    A Dataset or a DataFrame containing the sample of data to test

    sampleCol

    Name of sample column in dataset, of any numerical type

    cdf

    a Double => Double function to calculate the theoretical CDF at a given value

    returns

    DataFrame containing the test result for the input sampled data. This DataFrame will contain a single Row with the following fields:

    • pValue: Double
    • statistic: Double
    Annotations
    @Since( "2.4.0" )
  19. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  20. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Members