Object

org.apache.spark.ml.stat

ChiSquareTest

Related Doc: package stat

Permalink

object ChiSquareTest

:: Experimental ::

Chi-square hypothesis testing for categorical data.

See Wikipedia for more information on the Chi-squared test.

Annotations
@Experimental() @Since( "2.2.0" )
Source
ChiSquareTest.scala
Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ChiSquareTest
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  16. def test(dataset: DataFrame, featuresCol: String, labelCol: String): DataFrame

    Permalink

    Conduct Pearson's independence test for every feature against the label.

    Conduct Pearson's independence test for every feature against the label. For each feature, the (feature, label) pairs are converted into a contingency matrix for which the Chi-squared statistic is computed. All label and feature values must be categorical.

    The null hypothesis is that the occurrence of the outcomes is statistically independent.

    dataset

    DataFrame of categorical labels and categorical features. Real-valued features will be treated as categorical for each distinct value.

    featuresCol

    Name of features column in dataset, of type Vector (VectorUDT)

    labelCol

    Name of label column in dataset, of any numerical type

    returns

    DataFrame containing the test result for every feature against the label. This DataFrame will contain a single Row with the following fields:

    • pValues: Vector
    • degreesOfFreedom: Array[Int]
    • statistics: Vector Each of these fields has one value per feature.
    Annotations
    @Since( "2.2.0" )
  17. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  18. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Members