Class/Object

org.apache.spark.ml.regression

GBTRegressionModel

Related Docs: object GBTRegressionModel | package regression

Permalink

class GBTRegressionModel extends PredictionModel[Vector, GBTRegressionModel] with GBTRegressorParams with TreeEnsembleModel[DecisionTreeRegressionModel] with MLWritable with Serializable

Gradient-Boosted Trees (GBTs) model for regression. It supports both continuous and categorical features.

Annotations
@Since( "1.4.0" )
Source
GBTRegressor.scala
Linear Supertypes
MLWritable, TreeEnsembleModel[DecisionTreeRegressionModel], GBTRegressorParams, TreeRegressorParams, GBTParams, HasValidationIndicatorCol, HasStepSize, HasMaxIter, TreeEnsembleParams, DecisionTreeParams, HasSeed, HasCheckpointInterval, PredictionModel[Vector, GBTRegressionModel], PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Model[GBTRegressionModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. GBTRegressionModel
  2. MLWritable
  3. TreeEnsembleModel
  4. GBTRegressorParams
  5. TreeRegressorParams
  6. GBTParams
  7. HasValidationIndicatorCol
  8. HasStepSize
  9. HasMaxIter
  10. TreeEnsembleParams
  11. DecisionTreeParams
  12. HasSeed
  13. HasCheckpointInterval
  14. PredictionModel
  15. PredictorParams
  16. HasPredictionCol
  17. HasFeaturesCol
  18. HasLabelCol
  19. Model
  20. Transformer
  21. PipelineStage
  22. Logging
  23. Params
  24. Serializable
  25. Serializable
  26. Identifiable
  27. AnyRef
  28. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GBTRegressionModel(uid: String, _trees: Array[DecisionTreeRegressionModel], _treeWeights: Array[Double])

    Permalink

    Construct a GBTRegressionModel

    Construct a GBTRegressionModel

    _trees

    Decision trees in the ensemble.

    _treeWeights

    Weights for the decision trees in the ensemble.

    Annotations
    @Since( "1.4.0" )

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. final val cacheNodeIds: BooleanParam

    Permalink

    If false, the algorithm will pass trees to executors to match instances with nodes.

    If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false)

    Definition Classes
    DecisionTreeParams
  7. final val checkpointInterval: IntParam

    Permalink

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1).

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.

    Definition Classes
    HasCheckpointInterval
  8. final def clear(param: Param[_]): GBTRegressionModel.this.type

    Permalink

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def copy(extra: ParamMap): GBTRegressionModel

    Permalink

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    GBTRegressionModelModelTransformerPipelineStageParams
    Annotations
    @Since( "1.4.0" )
  11. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Permalink

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  12. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  13. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  15. def evaluateEachIteration(dataset: Dataset[_], loss: String): Array[Double]

    Permalink

    Method to compute error or loss for every iteration of gradient boosting.

    Method to compute error or loss for every iteration of gradient boosting.

    dataset

    Dataset for validation.

    loss

    The loss function used to compute error. Supported options: squared, absolute

    Annotations
    @Since( "2.4.0" )
  16. def explainParam(param: Param[_]): String

    Permalink

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  17. def explainParams(): String

    Permalink

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  18. final def extractParamMap(): ParamMap

    Permalink

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  19. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  20. lazy val featureImportances: Vector

    Permalink

    Estimate of the importance of each feature.

    Estimate of the importance of each feature.

    Each feature's importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.) and follows the implementation from scikit-learn.

    Annotations
    @Since( "2.0.0" )
    See also

    DecisionTreeRegressionModel.featureImportances

  21. final val featureSubsetStrategy: Param[String]

    Permalink

    The number of features to consider for splits at each tree node.

    The number of features to consider for splits at each tree node. Supported options:

    • "auto": Choose automatically for task: If numTrees == 1, set to "all." If numTrees greater than 1 (forest), set to "sqrt" for classification and to "onethird" for regression.
    • "all": use all features
    • "onethird": use 1/3 of the features
    • "sqrt": use sqrt(number of features)
    • "log2": use log2(number of features)
    • "n": when n is in the range (0, 1.0], use n * number of features. When n is in the range (1, number of features), use n features. (default = "auto")

    These various settings are based on the following references:

    • log2: tested in Breiman (2001)
    • sqrt: recommended by Breiman manual for random forests
    • The defaults of sqrt (classification) and onethird (regression) match the R randomForest package.
    Definition Classes
    TreeEnsembleParams
    See also

    Breiman manual for random forests

    Breiman (2001)

  22. final val featuresCol: Param[String]

    Permalink

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  23. def featuresDataType: DataType

    Permalink

    Returns the SQL DataType corresponding to the FeaturesType type parameter.

    Returns the SQL DataType corresponding to the FeaturesType type parameter.

    This is used by validateAndTransformSchema(). This workaround is needed since SQL has different APIs for Scala and Java.

    The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.

    Attributes
    protected
    Definition Classes
    PredictionModel
  24. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  25. final def get[T](param: Param[T]): Option[T]

    Permalink

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  26. final def getCacheNodeIds: Boolean

    Permalink

    Definition Classes
    DecisionTreeParams
  27. final def getCheckpointInterval: Int

    Permalink

    Definition Classes
    HasCheckpointInterval
  28. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  29. final def getDefault[T](param: Param[T]): Option[T]

    Permalink

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  30. final def getFeatureSubsetStrategy: String

    Permalink

    Definition Classes
    TreeEnsembleParams
  31. final def getFeaturesCol: String

    Permalink

    Definition Classes
    HasFeaturesCol
  32. final def getImpurity: String

    Permalink

    Definition Classes
    TreeRegressorParams
  33. final def getLabelCol: String

    Permalink

    Definition Classes
    HasLabelCol
  34. def getLossType: String

    Permalink

    Definition Classes
    GBTRegressorParams
  35. final def getMaxBins: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  36. final def getMaxDepth: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  37. final def getMaxIter: Int

    Permalink

    Definition Classes
    HasMaxIter
  38. final def getMaxMemoryInMB: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  39. final def getMinInfoGain: Double

    Permalink

    Definition Classes
    DecisionTreeParams
  40. final def getMinInstancesPerNode: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  41. val getNumTrees: Int

    Permalink

    Number of trees in ensemble

    Number of trees in ensemble

    Annotations
    @Since( "2.0.0" )
  42. final def getOrDefault[T](param: Param[T]): T

    Permalink

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  43. def getParam(paramName: String): Param[Any]

    Permalink

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  44. final def getPredictionCol: String

    Permalink

    Definition Classes
    HasPredictionCol
  45. final def getSeed: Long

    Permalink

    Definition Classes
    HasSeed
  46. final def getStepSize: Double

    Permalink

    Definition Classes
    HasStepSize
  47. final def getSubsamplingRate: Double

    Permalink

    Definition Classes
    TreeEnsembleParams
  48. final def getValidationIndicatorCol: String

    Permalink

    Definition Classes
    HasValidationIndicatorCol
  49. final def getValidationTol: Double

    Permalink

    Definition Classes
    GBTParams
    Annotations
    @Since( "2.4.0" )
  50. final def hasDefault[T](param: Param[T]): Boolean

    Permalink

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  51. def hasParam(paramName: String): Boolean

    Permalink

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  52. def hasParent: Boolean

    Permalink

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  53. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  54. final val impurity: Param[String]

    Permalink

    Criterion used for information gain calculation (case-insensitive).

    Criterion used for information gain calculation (case-insensitive). Supported: "variance". (default = variance)

    Definition Classes
    TreeRegressorParams
  55. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean = false): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  56. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  57. final def isDefined(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  58. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  59. final def isSet(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  60. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  61. final val labelCol: Param[String]

    Permalink

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  62. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  63. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  64. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  65. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  66. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  67. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  68. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  69. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  70. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  71. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  72. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  74. val lossType: Param[String]

    Permalink

    Loss function which GBT tries to minimize.

    Loss function which GBT tries to minimize. (case-insensitive) Supported: "squared" (L2) and "absolute" (L1) (default = squared)

    Definition Classes
    GBTRegressorParams
  75. final val maxBins: IntParam

    Permalink

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be at least 2 and at least number of categories in any categorical feature. (default = 32)

    Definition Classes
    DecisionTreeParams
  76. final val maxDepth: IntParam

    Permalink

    Maximum depth of the tree (nonnegative).

    Maximum depth of the tree (nonnegative). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5)

    Definition Classes
    DecisionTreeParams
  77. final val maxIter: IntParam

    Permalink

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  78. final val maxMemoryInMB: IntParam

    Permalink

    Maximum memory in MB allocated to histogram aggregation.

    Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB)

    Definition Classes
    DecisionTreeParams
  79. final val minInfoGain: DoubleParam

    Permalink

    Minimum information gain for a split to be considered at a tree node.

    Minimum information gain for a split to be considered at a tree node. Should be at least 0.0. (default = 0.0)

    Definition Classes
    DecisionTreeParams
  80. final val minInstancesPerNode: IntParam

    Permalink

    Minimum number of instances each child must have after split.

    Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Must be at least 1. (default = 1)

    Definition Classes
    DecisionTreeParams
  81. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  82. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  83. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  84. val numFeatures: Int

    Permalink

    Returns the number of features the model was trained on.

    Returns the number of features the model was trained on. If unknown, returns -1

    Definition Classes
    GBTRegressionModelPredictionModel
  85. lazy val params: Array[Param[_]]

    Permalink

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  86. var parent: Estimator[GBTRegressionModel]

    Permalink

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  87. def predict(features: Vector): Double

    Permalink

    Predict label for the given features.

    Predict label for the given features. This method is used to implement transform() and output predictionCol.

    Definition Classes
    GBTRegressionModelPredictionModel
  88. final val predictionCol: Param[String]

    Permalink

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  89. def save(path: String): Unit

    Permalink

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  90. final val seed: LongParam

    Permalink

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  91. final def set(paramPair: ParamPair[_]): GBTRegressionModel.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  92. final def set(param: String, value: Any): GBTRegressionModel.this.type

    Permalink

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  93. final def set[T](param: Param[T], value: T): GBTRegressionModel.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  94. final def setDefault(paramPairs: ParamPair[_]*): GBTRegressionModel.this.type

    Permalink

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  95. final def setDefault[T](param: Param[T], value: T): GBTRegressionModel.this.type

    Permalink

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  96. def setFeaturesCol(value: String): GBTRegressionModel

    Permalink

    Definition Classes
    PredictionModel
  97. def setParent(parent: Estimator[GBTRegressionModel]): GBTRegressionModel

    Permalink

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  98. def setPredictionCol(value: String): GBTRegressionModel

    Permalink

    Definition Classes
    PredictionModel
  99. final val stepSize: DoubleParam

    Permalink

    Param for Step size (a.k.a.

    Param for Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of each estimator. (default = 0.1)

    Definition Classes
    GBTParams → HasStepSize
  100. final val subsamplingRate: DoubleParam

    Permalink

    Fraction of the training data used for learning each decision tree, in range (0, 1].

    Fraction of the training data used for learning each decision tree, in range (0, 1]. (default = 1.0)

    Definition Classes
    TreeEnsembleParams
  101. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  102. def toDebugString: String

    Permalink

    Full description of model

    Full description of model

    Definition Classes
    TreeEnsembleModel
  103. def toString(): String

    Permalink

    Summary of the model

    Summary of the model

    Definition Classes
    GBTRegressionModel → TreeEnsembleModel → Identifiable → AnyRef → Any
    Annotations
    @Since( "1.4.0" )
  104. lazy val totalNumNodes: Int

    Permalink

    Total number of nodes, summed over all trees in the ensemble.

    Total number of nodes, summed over all trees in the ensemble.

    Definition Classes
    TreeEnsembleModel
  105. def transform(dataset: Dataset[_]): DataFrame

    Permalink

    Transforms dataset by reading from featuresCol, calling predict, and storing the predictions as a new column predictionCol.

    Transforms dataset by reading from featuresCol, calling predict, and storing the predictions as a new column predictionCol.

    dataset

    input dataset

    returns

    transformed dataset with predictionCol of type Double

    Definition Classes
    PredictionModelTransformer
  106. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Permalink

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  107. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Permalink

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  108. def transformImpl(dataset: Dataset[_]): DataFrame

    Permalink
    Attributes
    protected
    Definition Classes
    GBTRegressionModelPredictionModel
  109. def transformSchema(schema: StructType): StructType

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    PredictionModelPipelineStage
  110. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  111. def treeWeights: Array[Double]

    Permalink

    Weights for each tree, zippable with trees

    Weights for each tree, zippable with trees

    Definition Classes
    GBTRegressionModel → TreeEnsembleModel
    Annotations
    @Since( "1.4.0" )
  112. def trees: Array[DecisionTreeRegressionModel]

    Permalink

    Trees in this ensemble.

    Trees in this ensemble. Warning: These have null parent Estimators.

    Definition Classes
    GBTRegressionModel → TreeEnsembleModel
    Annotations
    @Since( "1.4.0" )
  113. val uid: String

    Permalink

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    GBTRegressionModelIdentifiable
  114. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink

    Validates and transforms the input schema with the provided param map.

    Validates and transforms the input schema with the provided param map.

    schema

    input schema

    fitting

    whether this is in fitting

    featuresDataType

    SQL DataType for FeaturesType. E.g., VectorUDT for vector features.

    returns

    output schema

    Attributes
    protected
    Definition Classes
    PredictorParams
  115. final val validationIndicatorCol: Param[String]

    Permalink

    Param for name of the column that indicates whether each row is for training or for validation.

    Param for name of the column that indicates whether each row is for training or for validation. False indicates training; true indicates validation..

    Definition Classes
    HasValidationIndicatorCol
  116. final val validationTol: DoubleParam

    Permalink

    Threshold for stopping early when fit with validation is used.

    Threshold for stopping early when fit with validation is used. (This parameter is ignored when fit without validation is used.) The decision to stop early is decided based on this logic: If the current loss on the validation set is greater than 0.01, the diff of validation error is compared to relative tolerance which is validationTol * (current loss on the validation set). If the current loss on the validation set is less than or equal to 0.01, the diff of validation error is compared to absolute tolerance which is validationTol * 0.01.

    Definition Classes
    GBTParams
    Annotations
    @Since( "2.4.0" )
    See also

    validationIndicatorCol

  117. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  118. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  119. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  120. def write: MLWriter

    Permalink

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    GBTRegressionModelMLWritable
    Annotations
    @Since( "2.0.0" )

Deprecated Value Members

  1. val numTrees: Int

    Permalink

    Number of trees in ensemble

    Number of trees in ensemble

    Annotations
    @deprecated
    Deprecated

    (Since version 2.4.5) Use getNumTrees instead. This method will be removed in 3.0.0.

  2. def setCacheNodeIds(value: Boolean): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  3. def setCheckpointInterval(value: Int): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  4. def setFeatureSubsetStrategy(value: String): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    TreeEnsembleParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  5. def setImpurity(value: String): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    TreeRegressorParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  6. def setMaxBins(value: Int): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  7. def setMaxDepth(value: Int): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  8. def setMaxIter(value: Int): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    GBTParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  9. def setMaxMemoryInMB(value: Int): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  10. def setMinInfoGain(value: Double): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  11. def setMinInstancesPerNode(value: Int): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  12. def setSeed(value: Long): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  13. def setStepSize(value: Double): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    GBTParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

  14. def setSubsamplingRate(value: Double): GBTRegressionModel.this.type

    Permalink

    Definition Classes
    TreeEnsembleParams
    Annotations
    @deprecated
    Deprecated

    (Since version 2.1.0) This method is deprecated and will be removed in 3.0.0.

Inherited from MLWritable

Inherited from TreeEnsembleModel[DecisionTreeRegressionModel]

Inherited from GBTRegressorParams

Inherited from TreeRegressorParams

Inherited from GBTParams

Inherited from HasValidationIndicatorCol

Inherited from HasStepSize

Inherited from HasMaxIter

Inherited from TreeEnsembleParams

Inherited from DecisionTreeParams

Inherited from HasSeed

Inherited from HasCheckpointInterval

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from Model[GBTRegressionModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

(expert-only) Parameter setters

(expert-only) Parameter getters