Object

org.apache.spark.graphx.util

GraphGenerators

Related Doc: package util

Permalink

object GraphGenerators extends Logging

A collection of graph generating functions.

Source
GraphGenerators.scala
Linear Supertypes
Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GraphGenerators
  2. Logging
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. val RMATa: Double

    Permalink
  5. val RMATb: Double

    Permalink
  6. val RMATc: Double

    Permalink
  7. val RMATd: Double

    Permalink
  8. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  12. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def generateRandomEdges(src: Int, numEdges: Int, maxVertexId: Int, seed: Long = 1): Array[Edge[Int]]

    Permalink
  14. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  15. def gridGraph(sc: SparkContext, rows: Int, cols: Int): Graph[(Int, Int), Double]

    Permalink

    Create rows by cols grid graph with each vertex connected to its row+1 and col+1 neighbors.

    Create rows by cols grid graph with each vertex connected to its row+1 and col+1 neighbors. Vertex ids are assigned in row major order.

    sc

    the spark context in which to construct the graph

    rows

    the number of rows

    cols

    the number of columns

    returns

    A graph containing vertices with the row and column ids as their attributes and edge values as 1.0.

  16. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  17. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean = false): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  18. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  19. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  20. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  21. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  22. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  23. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  24. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  25. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  26. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  27. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  28. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  29. def logNormalGraph(sc: SparkContext, numVertices: Int, numEParts: Int = 0, mu: Double = 4.0, sigma: Double = 1.3, seed: Long = 1): Graph[Long, Int]

    Permalink

    Generate a graph whose vertex out degree distribution is log normal.

    Generate a graph whose vertex out degree distribution is log normal.

    The default values for mu and sigma are taken from the Pregel paper:

    Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale graph processing. SIGMOD '10.

    If the seed is -1 (default), a random seed is chosen. Otherwise, use the user-specified seed.

    sc

    Spark Context

    numVertices

    number of vertices in generated graph

    numEParts

    (optional) number of partitions

    mu

    (optional, default: 4.0) mean of out-degree distribution

    sigma

    (optional, default: 1.3) standard deviation of out-degree distribution

    seed

    (optional, default: -1) seed for RNGs, -1 causes a random seed to be chosen

    returns

    Graph object

  30. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  31. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  32. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  33. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  34. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  35. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  36. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  37. def rmatGraph(sc: SparkContext, requestedNumVertices: Int, numEdges: Int): Graph[Int, Int]

    Permalink

    A random graph generator using the R-MAT model, proposed in "R-MAT: A Recursive Model for Graph Mining" by Chakrabarti et al.

    A random graph generator using the R-MAT model, proposed in "R-MAT: A Recursive Model for Graph Mining" by Chakrabarti et al.

    See http://www.cs.cmu.edu/~christos/PUBLICATIONS/siam04.pdf.

  38. def starGraph(sc: SparkContext, nverts: Int): Graph[Int, Int]

    Permalink

    Create a star graph with vertex 0 being the center.

    Create a star graph with vertex 0 being the center.

    sc

    the spark context in which to construct the graph

    nverts

    the number of vertices in the star

    returns

    A star graph containing nverts vertices with vertex 0 being the center vertex.

  39. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  40. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  41. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  42. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  43. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped