Object

org.apache.spark.mllib.tree.loss

AbsoluteError

Related Doc: package loss

Permalink

object AbsoluteError extends Loss

:: DeveloperApi :: Class for absolute error loss calculation (for regression).

The absolute (L1) error is defined as: |y - F(x)| where y is the label and F(x) is the model prediction for features x.

Annotations
@Since( "1.2.0" ) @DeveloperApi()
Source
AbsoluteError.scala
Linear Supertypes
Loss, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. AbsoluteError
  2. Loss
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def computeError(model: TreeEnsembleModel, data: RDD[LabeledPoint]): Double

    Permalink

    Method to calculate error of the base learner for the gradient boosting calculation.

    Method to calculate error of the base learner for the gradient boosting calculation.

    model

    Model of the weak learner.

    data

    Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint.

    returns

    Measure of model error on data

    Definition Classes
    Loss
    Annotations
    @Since( "1.2.0" )
    Note

    This method is not used by the gradient boosting algorithm but is useful for debugging purposes.

  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def gradient(prediction: Double, label: Double): Double

    Permalink

    Method to calculate the gradients for the gradient boosting calculation for least absolute error calculation.

    Method to calculate the gradients for the gradient boosting calculation for least absolute error calculation. The gradient with respect to F(x) is: sign(F(x) - y)

    prediction

    Predicted label.

    label

    True label.

    returns

    Loss gradient

    Definition Classes
    AbsoluteErrorLoss
    Annotations
    @Since( "1.2.0" )
  12. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  18. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  19. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Loss

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped