Object

org.apache.spark.mllib.util

MLUtils

Related Doc: package util

Permalink

object MLUtils extends Logging

Helper methods to load, save and pre-process data used in MLLib.

Annotations
@Since( "0.8.0" )
Source
MLUtils.scala
Linear Supertypes
Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MLUtils
  2. Logging
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def appendBias(vector: Vector): Vector

    Permalink

    Returns a new vector with 1.0 (bias) appended to the input vector.

    Returns a new vector with 1.0 (bias) appended to the input vector.

    Annotations
    @Since( "1.0.0" )
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def convertMatrixColumnsFromML(dataset: Dataset[_], cols: String*): DataFrame

    Permalink

    Converts matrix columns in an input Dataset to the org.apache.spark.mllib.linalg.Matrix type from the new org.apache.spark.ml.linalg.Matrix type under the spark.ml package.

    Converts matrix columns in an input Dataset to the org.apache.spark.mllib.linalg.Matrix type from the new org.apache.spark.ml.linalg.Matrix type under the spark.ml package.

    dataset

    input dataset

    cols

    a list of matrix columns to be converted. Old matrix columns will be ignored. If unspecified, all new matrix columns will be converted except nested ones.

    returns

    the input DataFrame with new matrix columns converted to the old matrix type

    Annotations
    @Since( "2.0.0" ) @varargs()
  8. def convertMatrixColumnsToML(dataset: Dataset[_], cols: String*): DataFrame

    Permalink

    Converts Matrix columns in an input Dataset from the org.apache.spark.mllib.linalg.Matrix type to the new org.apache.spark.ml.linalg.Matrix type under the spark.ml package.

    Converts Matrix columns in an input Dataset from the org.apache.spark.mllib.linalg.Matrix type to the new org.apache.spark.ml.linalg.Matrix type under the spark.ml package.

    dataset

    input dataset

    cols

    a list of matrix columns to be converted. New matrix columns will be ignored. If unspecified, all old matrix columns will be converted except nested ones.

    returns

    the input DataFrame with old matrix columns converted to the new matrix type

    Annotations
    @Since( "2.0.0" ) @varargs()
  9. def convertVectorColumnsFromML(dataset: Dataset[_], cols: String*): DataFrame

    Permalink

    Converts vector columns in an input Dataset to the org.apache.spark.mllib.linalg.Vector type from the new org.apache.spark.ml.linalg.Vector type under the spark.ml package.

    Converts vector columns in an input Dataset to the org.apache.spark.mllib.linalg.Vector type from the new org.apache.spark.ml.linalg.Vector type under the spark.ml package.

    dataset

    input dataset

    cols

    a list of vector columns to be converted. Old vector columns will be ignored. If unspecified, all new vector columns will be converted except nested ones.

    returns

    the input DataFrame with new vector columns converted to the old vector type

    Annotations
    @Since( "2.0.0" ) @varargs()
  10. def convertVectorColumnsToML(dataset: Dataset[_], cols: String*): DataFrame

    Permalink

    Converts vector columns in an input Dataset from the org.apache.spark.mllib.linalg.Vector type to the new org.apache.spark.ml.linalg.Vector type under the spark.ml package.

    Converts vector columns in an input Dataset from the org.apache.spark.mllib.linalg.Vector type to the new org.apache.spark.ml.linalg.Vector type under the spark.ml package.

    dataset

    input dataset

    cols

    a list of vector columns to be converted. New vector columns will be ignored. If unspecified, all old vector columns will be converted except nested ones.

    returns

    the input DataFrame with old vector columns converted to the new vector type

    Annotations
    @Since( "2.0.0" ) @varargs()
  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  16. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  17. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  18. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  19. def kFold[T](rdd: RDD[T], numFolds: Int, seed: Long)(implicit arg0: ClassTag[T]): Array[(RDD[T], RDD[T])]

    Permalink

    Version of kFold() taking a Long seed.

    Version of kFold() taking a Long seed.

    Annotations
    @Since( "2.0.0" )
  20. def kFold[T](rdd: RDD[T], numFolds: Int, seed: Int)(implicit arg0: ClassTag[T]): Array[(RDD[T], RDD[T])]

    Permalink

    Return a k element array of pairs of RDDs with the first element of each pair containing the training data, a complement of the validation data and the second element, the validation data, containing a unique 1/kth of the data.

    Return a k element array of pairs of RDDs with the first element of each pair containing the training data, a complement of the validation data and the second element, the validation data, containing a unique 1/kth of the data. Where k=numFolds.

    Annotations
    @Since( "1.0.0" )
  21. def loadLabeledPoints(sc: SparkContext, dir: String): RDD[LabeledPoint]

    Permalink

    Loads labeled points saved using RDD[LabeledPoint].saveAsTextFile with the default number of partitions.

    Loads labeled points saved using RDD[LabeledPoint].saveAsTextFile with the default number of partitions.

    Annotations
    @Since( "1.1.0" )
  22. def loadLabeledPoints(sc: SparkContext, path: String, minPartitions: Int): RDD[LabeledPoint]

    Permalink

    Loads labeled points saved using RDD[LabeledPoint].saveAsTextFile.

    Loads labeled points saved using RDD[LabeledPoint].saveAsTextFile.

    sc

    Spark context

    path

    file or directory path in any Hadoop-supported file system URI

    minPartitions

    min number of partitions

    returns

    labeled points stored as an RDD[LabeledPoint]

    Annotations
    @Since( "1.1.0" )
  23. def loadLibSVMFile(sc: SparkContext, path: String): RDD[LabeledPoint]

    Permalink

    Loads binary labeled data in the LIBSVM format into an RDD[LabeledPoint], with number of features determined automatically and the default number of partitions.

    Loads binary labeled data in the LIBSVM format into an RDD[LabeledPoint], with number of features determined automatically and the default number of partitions.

    Annotations
    @Since( "1.0.0" )
  24. def loadLibSVMFile(sc: SparkContext, path: String, numFeatures: Int): RDD[LabeledPoint]

    Permalink

    Loads labeled data in the LIBSVM format into an RDD[LabeledPoint], with the default number of partitions.

    Loads labeled data in the LIBSVM format into an RDD[LabeledPoint], with the default number of partitions.

    Annotations
    @Since( "1.0.0" )
  25. def loadLibSVMFile(sc: SparkContext, path: String, numFeatures: Int, minPartitions: Int): RDD[LabeledPoint]

    Permalink

    Loads labeled data in the LIBSVM format into an RDD[LabeledPoint].

    Loads labeled data in the LIBSVM format into an RDD[LabeledPoint]. The LIBSVM format is a text-based format used by LIBSVM and LIBLINEAR. Each line represents a labeled sparse feature vector using the following format:

    label index1:value1 index2:value2 ...

    where the indices are one-based and in ascending order. This method parses each line into a org.apache.spark.mllib.regression.LabeledPoint, where the feature indices are converted to zero-based.

    sc

    Spark context

    path

    file or directory path in any Hadoop-supported file system URI

    numFeatures

    number of features, which will be determined from the input data if a nonpositive value is given. This is useful when the dataset is already split into multiple files and you want to load them separately, because some features may not present in certain files, which leads to inconsistent feature dimensions.

    minPartitions

    min number of partitions

    returns

    labeled data stored as an RDD[LabeledPoint]

    Annotations
    @Since( "1.0.0" )
  26. def loadVectors(sc: SparkContext, path: String): RDD[Vector]

    Permalink

    Loads vectors saved using RDD[Vector].saveAsTextFile with the default number of partitions.

    Loads vectors saved using RDD[Vector].saveAsTextFile with the default number of partitions.

    Annotations
    @Since( "1.1.0" )
  27. def loadVectors(sc: SparkContext, path: String, minPartitions: Int): RDD[Vector]

    Permalink

    Loads vectors saved using RDD[Vector].saveAsTextFile.

    Loads vectors saved using RDD[Vector].saveAsTextFile.

    sc

    Spark context

    path

    file or directory path in any Hadoop-supported file system URI

    minPartitions

    min number of partitions

    returns

    vectors stored as an RDD[Vector]

    Annotations
    @Since( "1.1.0" )
  28. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  29. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  30. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  31. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  32. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  33. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  34. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  35. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  36. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  37. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  38. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  39. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  40. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  41. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  42. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  43. def saveAsLibSVMFile(data: RDD[LabeledPoint], dir: String): Unit

    Permalink

    Save labeled data in LIBSVM format.

    Save labeled data in LIBSVM format.

    data

    an RDD of LabeledPoint to be saved

    dir

    directory to save the data

    Annotations
    @Since( "1.0.0" )
    See also

    org.apache.spark.mllib.util.MLUtils.loadLibSVMFile

  44. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  45. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  46. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  48. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped