Class

org.apache.spark.mllib.clustering

OnlineLDAOptimizer

Related Doc: package clustering

Permalink

final class OnlineLDAOptimizer extends LDAOptimizer

:: DeveloperApi ::

An online optimizer for LDA. The Optimizer implements the Online variational Bayes LDA algorithm, which processes a subset of the corpus on each iteration, and updates the term-topic distribution adaptively.

Original Online LDA paper: Hoffman, Blei and Bach, "Online Learning for Latent Dirichlet Allocation." NIPS, 2010.

Annotations
@Since( "1.4.0" ) @DeveloperApi()
Source
LDAOptimizer.scala
Linear Supertypes
LDAOptimizer, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OnlineLDAOptimizer
  2. LDAOptimizer
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OnlineLDAOptimizer()

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def getKappa: Double

    Permalink

    Learning rate: exponential decay rate

    Learning rate: exponential decay rate

    Annotations
    @Since( "1.4.0" )
  11. def getMiniBatchFraction: Double

    Permalink

    Mini-batch fraction, which sets the fraction of document sampled and used in each iteration

    Mini-batch fraction, which sets the fraction of document sampled and used in each iteration

    Annotations
    @Since( "1.4.0" )
  12. def getOptimizeDocConcentration: Boolean

    Permalink

    Optimize docConcentration, indicates whether docConcentration (Dirichlet parameter for document-topic distribution) will be optimized during training.

    Optimize docConcentration, indicates whether docConcentration (Dirichlet parameter for document-topic distribution) will be optimized during training.

    Annotations
    @Since( "1.5.0" )
  13. def getTau0: Double

    Permalink

    A (positive) learning parameter that downweights early iterations.

    A (positive) learning parameter that downweights early iterations. Larger values make early iterations count less.

    Annotations
    @Since( "1.4.0" )
  14. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. def setKappa(kappa: Double): OnlineLDAOptimizer.this.type

    Permalink

    Learning rate: exponential decay rate---should be between (0.5, 1.0] to guarantee asymptotic convergence.

    Learning rate: exponential decay rate---should be between (0.5, 1.0] to guarantee asymptotic convergence. Default: 0.51, based on the original Online LDA paper.

    Annotations
    @Since( "1.4.0" )
  20. def setMiniBatchFraction(miniBatchFraction: Double): OnlineLDAOptimizer.this.type

    Permalink

    Mini-batch fraction in (0, 1], which sets the fraction of document sampled and used in each iteration.

    Mini-batch fraction in (0, 1], which sets the fraction of document sampled and used in each iteration.

    Note that this should be adjusted in synch with LDA.setMaxIterations() so the entire corpus is used. Specifically, set both so that maxIterations * miniBatchFraction >= 1.

    Default: 0.05, i.e., 5% of total documents.

    Annotations
    @Since( "1.4.0" )
  21. def setOptimizeDocConcentration(optimizeDocConcentration: Boolean): OnlineLDAOptimizer.this.type

    Permalink

    Sets whether to optimize docConcentration parameter during training.

    Sets whether to optimize docConcentration parameter during training.

    Default: false

    Annotations
    @Since( "1.5.0" )
  22. def setTau0(tau0: Double): OnlineLDAOptimizer.this.type

    Permalink

    A (positive) learning parameter that downweights early iterations.

    A (positive) learning parameter that downweights early iterations. Larger values make early iterations count less. Default: 1024, following the original Online LDA paper.

    Annotations
    @Since( "1.4.0" )
  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  24. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  25. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from LDAOptimizer

Inherited from AnyRef

Inherited from Any

Ungrouped