Object/Class

org.apache.spark.mllib.tree

DecisionTree

Related Docs: class DecisionTree | package tree

Permalink

object DecisionTree extends Serializable with Logging

Annotations
@Since( "1.0.0" )
Source
DecisionTree.scala
Linear Supertypes
Logging, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DecisionTree
  2. Logging
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  14. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  15. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  16. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  17. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  18. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  19. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  20. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  21. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  22. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  23. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  24. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  25. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  26. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  27. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  28. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  29. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  30. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  31. def train(input: RDD[LabeledPoint], algo: Algo, impurity: Impurity, maxDepth: Int, numClasses: Int, maxBins: Int, quantileCalculationStrategy: QuantileStrategy, categoricalFeaturesInfo: Map[Int, Int]): DecisionTreeModel

    Permalink

    Method to train a decision tree model.

    Method to train a decision tree model. The method supports binary and multiclass classification and regression.

    Note: Using org.apache.spark.mllib.tree.DecisionTree$#trainClassifier and org.apache.spark.mllib.tree.DecisionTree$#trainRegressor is recommended to clearly separate classification and regression.

    input

    Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. For classification, labels should take values {0, 1, ..., numClasses-1}. For regression, labels are real numbers.

    algo

    Type of decision tree, either classification or regression.

    impurity

    Criterion used for information gain calculation.

    maxDepth

    Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes).

    numClasses

    Number of classes for classification. Default value of 2.

    maxBins

    Maximum number of bins used for splitting features.

    quantileCalculationStrategy

    Algorithm for calculating quantiles.

    categoricalFeaturesInfo

    Map storing arity of categorical features. An entry (n -> k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}.

    returns

    DecisionTreeModel that can be used for prediction.

    Annotations
    @Since( "1.0.0" )
  32. def train(input: RDD[LabeledPoint], algo: Algo, impurity: Impurity, maxDepth: Int, numClasses: Int): DecisionTreeModel

    Permalink

    Method to train a decision tree model.

    Method to train a decision tree model. The method supports binary and multiclass classification and regression.

    Note: Using org.apache.spark.mllib.tree.DecisionTree$#trainClassifier and org.apache.spark.mllib.tree.DecisionTree$#trainRegressor is recommended to clearly separate classification and regression.

    input

    Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. For classification, labels should take values {0, 1, ..., numClasses-1}. For regression, labels are real numbers.

    algo

    Type of decision tree, either classification or regression.

    impurity

    Criterion used for information gain calculation.

    maxDepth

    Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes).

    numClasses

    Number of classes for classification. Default value of 2.

    returns

    DecisionTreeModel that can be used for prediction.

    Annotations
    @Since( "1.2.0" )
  33. def train(input: RDD[LabeledPoint], algo: Algo, impurity: Impurity, maxDepth: Int): DecisionTreeModel

    Permalink

    Method to train a decision tree model.

    Method to train a decision tree model. The method supports binary and multiclass classification and regression.

    Note: Using org.apache.spark.mllib.tree.DecisionTree$#trainClassifier and org.apache.spark.mllib.tree.DecisionTree$#trainRegressor is recommended to clearly separate classification and regression.

    input

    Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. For classification, labels should take values {0, 1, ..., numClasses-1}. For regression, labels are real numbers.

    algo

    Type of decision tree, either classification or regression.

    impurity

    Criterion used for information gain calculation.

    maxDepth

    Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes).

    returns

    DecisionTreeModel that can be used for prediction.

    Annotations
    @Since( "1.0.0" )
  34. def train(input: RDD[LabeledPoint], strategy: Strategy): DecisionTreeModel

    Permalink

    Method to train a decision tree model.

    Method to train a decision tree model. The method supports binary and multiclass classification and regression.

    Note: Using org.apache.spark.mllib.tree.DecisionTree$#trainClassifier and org.apache.spark.mllib.tree.DecisionTree$#trainRegressor is recommended to clearly separate classification and regression.

    input

    Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. For classification, labels should take values {0, 1, ..., numClasses-1}. For regression, labels are real numbers.

    strategy

    The configuration parameters for the tree algorithm which specify the type of decision tree (classification or regression), feature type (continuous, categorical), depth of the tree, quantile calculation strategy, etc.

    returns

    DecisionTreeModel that can be used for prediction.

    Annotations
    @Since( "1.0.0" )
  35. def trainClassifier(input: JavaRDD[LabeledPoint], numClasses: Int, categoricalFeaturesInfo: Map[Integer, Integer], impurity: String, maxDepth: Int, maxBins: Int): DecisionTreeModel

    Permalink

    Java-friendly API for org.apache.spark.mllib.tree.DecisionTree$#trainClassifier

    Annotations
    @Since( "1.1.0" )
  36. def trainClassifier(input: RDD[LabeledPoint], numClasses: Int, categoricalFeaturesInfo: Map[Int, Int], impurity: String, maxDepth: Int, maxBins: Int): DecisionTreeModel

    Permalink

    Method to train a decision tree model for binary or multiclass classification.

    Method to train a decision tree model for binary or multiclass classification.

    input

    Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. Labels should take values {0, 1, ..., numClasses-1}.

    numClasses

    Number of classes for classification.

    categoricalFeaturesInfo

    Map storing arity of categorical features. An entry (n -> k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}.

    impurity

    Criterion used for information gain calculation. Supported values: "gini" (recommended) or "entropy".

    maxDepth

    Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). (suggested value: 5)

    maxBins

    Maximum number of bins used for splitting features. (suggested value: 32)

    returns

    DecisionTreeModel that can be used for prediction.

    Annotations
    @Since( "1.1.0" )
  37. def trainRegressor(input: JavaRDD[LabeledPoint], categoricalFeaturesInfo: Map[Integer, Integer], impurity: String, maxDepth: Int, maxBins: Int): DecisionTreeModel

    Permalink

    Java-friendly API for org.apache.spark.mllib.tree.DecisionTree$#trainRegressor

    Annotations
    @Since( "1.1.0" )
  38. def trainRegressor(input: RDD[LabeledPoint], categoricalFeaturesInfo: Map[Int, Int], impurity: String, maxDepth: Int, maxBins: Int): DecisionTreeModel

    Permalink

    Method to train a decision tree model for regression.

    Method to train a decision tree model for regression.

    input

    Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. Labels are real numbers.

    categoricalFeaturesInfo

    Map storing arity of categorical features. An entry (n -> k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}.

    impurity

    Criterion used for information gain calculation. The only supported value for regression is "variance".

    maxDepth

    Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). (suggested value: 5)

    maxBins

    Maximum number of bins used for splitting features. (suggested value: 32)

    returns

    DecisionTreeModel that can be used for prediction.

    Annotations
    @Since( "1.1.0" )
  39. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  41. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped