Class

org.apache.spark.mllib.optimization

Gradient

Related Doc: package optimization

Permalink

abstract class Gradient extends Serializable

:: DeveloperApi :: Class used to compute the gradient for a loss function, given a single data point.

Annotations
@DeveloperApi()
Source
Gradient.scala
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Gradient
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Gradient()

    Permalink

Abstract Value Members

  1. abstract def compute(data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double

    Permalink

    Compute the gradient and loss given the features of a single data point, add the gradient to a provided vector to avoid creating new objects, and return loss.

    Compute the gradient and loss given the features of a single data point, add the gradient to a provided vector to avoid creating new objects, and return loss.

    data

    features for one data point

    label

    label for this data point

    weights

    weights/coefficients corresponding to features

    cumGradient

    the computed gradient will be added to this vector

    returns

    loss

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def compute(data: Vector, label: Double, weights: Vector): (Vector, Double)

    Permalink

    Compute the gradient and loss given the features of a single data point.

    Compute the gradient and loss given the features of a single data point.

    data

    features for one data point

    label

    label for this data point

    weights

    weights/coefficients corresponding to features

    returns

    (gradient: Vector, loss: Double)

  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  17. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  18. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped