org.apache.spark.mllib.optimization

LBFGS

object LBFGS extends Logging with Serializable

:: DeveloperApi :: Top-level method to run L-BFGS.

Annotations
@DeveloperApi()
Linear Supertypes
Serializable, Serializable, Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LBFGS
  2. Serializable
  3. Serializable
  4. Logging
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  15. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  16. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  17. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  18. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  19. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  20. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  22. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  23. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  24. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  27. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  28. final def notify(): Unit

    Definition Classes
    AnyRef
  29. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  30. def runLBFGS(data: RDD[(Double, Vector)], gradient: Gradient, updater: Updater, numCorrections: Int, convergenceTol: Double, maxNumIterations: Int, regParam: Double, initialWeights: Vector): (Vector, Array[Double])

    Run Limited-memory BFGS (L-BFGS) in parallel.

    Run Limited-memory BFGS (L-BFGS) in parallel. Averaging the subgradients over different partitions is performed using one standard spark map-reduce in each iteration.

    data

    - Input data for L-BFGS. RDD of the set of data examples, each of the form (label, [feature values]).

    gradient

    - Gradient object (used to compute the gradient of the loss function of one single data example)

    updater

    - Updater function to actually perform a gradient step in a given direction.

    numCorrections

    - The number of corrections used in the L-BFGS update.

    convergenceTol

    - The convergence tolerance of iterations for L-BFGS which is must be nonnegative. Lower values are less tolerant and therefore generally cause more iterations to be run.

    maxNumIterations

    - Maximal number of iterations that L-BFGS can be run.

    regParam

    - Regularization parameter

    returns

    A tuple containing two elements. The first element is a column matrix containing weights for every feature, and the second element is an array containing the loss computed for every iteration.

  31. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  32. def toString(): String

    Definition Classes
    AnyRef → Any
  33. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped