org.apache.spark.ml.classification

NaiveBayesModel

class NaiveBayesModel extends ProbabilisticClassificationModel[Vector, NaiveBayesModel] with NaiveBayesParams

:: Experimental :: Model produced by NaiveBayes

Annotations
@Experimental()
Linear Supertypes
NaiveBayesParams, ProbabilisticClassificationModel[Vector, NaiveBayesModel], ProbabilisticClassifierParams, HasThresholds, HasProbabilityCol, ClassificationModel[Vector, NaiveBayesModel], ClassifierParams, HasRawPredictionCol, PredictionModel[Vector, NaiveBayesModel], PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Model[NaiveBayesModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By inheritance
Inherited
  1. NaiveBayesModel
  2. NaiveBayesParams
  3. ProbabilisticClassificationModel
  4. ProbabilisticClassifierParams
  5. HasThresholds
  6. HasProbabilityCol
  7. ClassificationModel
  8. ClassifierParams
  9. HasRawPredictionCol
  10. PredictionModel
  11. PredictorParams
  12. HasPredictionCol
  13. HasFeaturesCol
  14. HasLabelCol
  15. Model
  16. Transformer
  17. PipelineStage
  18. Logging
  19. Params
  20. Serializable
  21. Serializable
  22. Identifiable
  23. AnyRef
  24. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def $[T](param: Param[T]): T

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  5. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  6. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. final def clear(param: Param[_]): NaiveBayesModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Attributes
    protected
    Definition Classes
    Params
  9. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def copy(extra: ParamMap): NaiveBayesModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly.

    Definition Classes
    NaiveBayesModelModelTransformerPipelineStageParams
    See also

    defaultCopy()

  11. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  12. final def defaultCopy[T <: Params](extra: ParamMap): T

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  13. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  14. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  15. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  16. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance.

    Definition Classes
    Params
    See also

    explainParam()

  17. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  18. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

    Definition Classes
    Params
  19. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  20. def featuresDataType: DataType

    Returns the SQL DataType corresponding to the FeaturesType type parameter.

    Returns the SQL DataType corresponding to the FeaturesType type parameter.

    This is used by validateAndTransformSchema(). This workaround is needed since SQL has different APIs for Scala and Java.

    The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.

    Attributes
    protected
    Definition Classes
    PredictionModel
  21. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  22. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  23. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  24. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  25. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  26. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  27. final def getModelType: String

    Definition Classes
    NaiveBayesParams
  28. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  29. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  30. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  31. final def getProbabilityCol: String

    Definition Classes
    HasProbabilityCol
  32. final def getRawPredictionCol: String

    Definition Classes
    HasRawPredictionCol
  33. final def getSmoothing: Double

    Definition Classes
    NaiveBayesParams
  34. def getThresholds: Array[Double]

    Definition Classes
    HasThresholds
  35. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  36. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  37. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  38. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  39. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  40. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  41. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  42. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  43. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  44. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  45. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  46. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  47. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  48. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  49. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  50. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  51. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  52. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  53. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  54. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  55. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  56. final val modelType: Param[String]

    The model type which is a string (case-sensitive).

    The model type which is a string (case-sensitive). Supported options: "multinomial" and "bernoulli". (default = multinomial)

    Definition Classes
    NaiveBayesParams
  57. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  58. final def notify(): Unit

    Definition Classes
    AnyRef
  59. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  60. val numClasses: Int

    Number of classes (values which the label can take).

    Number of classes (values which the label can take).

    Definition Classes
    NaiveBayesModelClassificationModel
  61. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Note: Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

    Definition Classes
    Params
  62. var parent: Estimator[NaiveBayesModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model. Note: For ensembles' component Models, this value can be null.

    Definition Classes
    Model
  63. val pi: Vector

    log of class priors, whose dimension is C (number of classes)

  64. def predict(features: Vector): Double

    Predict label for the given features.

    Predict label for the given features. This internal method is used to implement transform() and output predictionCol.

    This default implementation for classification predicts the index of the maximum value from predictRaw().

    Attributes
    protected
    Definition Classes
    ClassificationModelPredictionModel
  65. def predictProbability(features: Vector): Vector

    Predict the probability of each class given the features.

    Predict the probability of each class given the features. These predictions are also called class conditional probabilities.

    This internal method is used to implement transform() and output probabilityCol.

    returns

    Estimated class conditional probabilities

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModel
  66. def predictRaw(features: Vector): Vector

    Raw prediction for each possible label.

    Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implement transform() and output rawPredictionCol.

    returns

    vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.

    Attributes
    protected
    Definition Classes
    NaiveBayesModelClassificationModel
  67. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  68. def probability2prediction(probability: Vector): Double

    Given a vector of class conditional probabilities, select the predicted label.

    Given a vector of class conditional probabilities, select the predicted label. This supports thresholds which favor particular labels.

    returns

    predicted label

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModel
  69. final val probabilityCol: Param[String]

    Param for Column name for predicted class conditional probabilities.

    Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities..

    Definition Classes
    HasProbabilityCol
  70. def raw2prediction(rawPrediction: Vector): Double

    Given a vector of raw predictions, select the predicted label.

    Given a vector of raw predictions, select the predicted label. This may be overridden to support thresholds which favor particular labels.

    returns

    predicted label

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModelClassificationModel
  71. def raw2probability(rawPrediction: Vector): Vector

    Non-in-place version of raw2probabilityInPlace()

    Non-in-place version of raw2probabilityInPlace()

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModel
  72. def raw2probabilityInPlace(rawPrediction: Vector): Vector

    Estimate the probability of each class given the raw prediction, doing the computation in-place.

    Estimate the probability of each class given the raw prediction, doing the computation in-place. These predictions are also called class conditional probabilities.

    This internal method is used to implement transform() and output probabilityCol.

    returns

    Estimated class conditional probabilities (modified input vector)

    Attributes
    protected
    Definition Classes
    NaiveBayesModelProbabilisticClassificationModel
  73. final val rawPredictionCol: Param[String]

    Param for raw prediction (a.

    Param for raw prediction (a.k.a. confidence) column name.

    Definition Classes
    HasRawPredictionCol
  74. final def set(paramPair: ParamPair[_]): NaiveBayesModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  75. final def set(param: String, value: Any): NaiveBayesModel.this.type

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  76. final def set[T](param: Param[T], value: T): NaiveBayesModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  77. final def setDefault(paramPairs: ParamPair[_]*): NaiveBayesModel.this.type

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault(). Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  78. final def setDefault[T](param: Param[T], value: T): NaiveBayesModel.this.type

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  79. def setFeaturesCol(value: String): NaiveBayesModel

    Definition Classes
    PredictionModel
  80. def setParent(parent: Estimator[NaiveBayesModel]): NaiveBayesModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  81. def setPredictionCol(value: String): NaiveBayesModel

    Definition Classes
    PredictionModel
  82. def setProbabilityCol(value: String): NaiveBayesModel

  83. def setRawPredictionCol(value: String): NaiveBayesModel

    Definition Classes
    ClassificationModel
  84. def setThresholds(value: Array[Double]): NaiveBayesModel

  85. final val smoothing: DoubleParam

    The smoothing parameter.

    The smoothing parameter. (default = 1.0).

    Definition Classes
    NaiveBayesParams
  86. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  87. val theta: Matrix

    log of class conditional probabilities, whose dimension is C (number of classes) by D (number of features)

  88. final val thresholds: DoubleArrayParam

    Param for Thresholds in multi-class classification to adjust the probability of predicting each class.

    Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values >= 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class' threshold..

    Definition Classes
    HasThresholds
  89. def toString(): String

    Definition Classes
    NaiveBayesModelIdentifiable → AnyRef → Any
  90. def transform(dataset: DataFrame): DataFrame

    Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:

    Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:

    dataset

    input dataset

    returns

    transformed dataset

    Definition Classes
    ProbabilisticClassificationModelClassificationModelPredictionModelTransformer
  91. def transform(dataset: DataFrame, paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
  92. def transform(dataset: DataFrame, firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @varargs()
  93. def transformImpl(dataset: DataFrame): DataFrame

    Attributes
    protected
    Definition Classes
    PredictionModel
  94. def transformSchema(schema: StructType): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema.

    Definition Classes
    PredictionModelPipelineStage
  95. def transformSchema(schema: StructType, logging: Boolean): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  96. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    NaiveBayesModelIdentifiable
  97. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Validates and transforms the input schema with the provided param map.

    Validates and transforms the input schema with the provided param map.

    schema

    input schema

    fitting

    whether this is in fitting

    featuresDataType

    SQL DataType for FeaturesType. E.g., org.apache.spark.mllib.linalg.VectorUDT for vector features.

    returns

    output schema

    Attributes
    protected
    Definition Classes
    ProbabilisticClassifierParams → ClassifierParams → PredictorParams
  98. def validateParams(): Unit

    Validates parameter values stored internally.

    Validates parameter values stored internally. Raise an exception if any parameter value is invalid.

    This only needs to check for interactions between parameters. Parameter value checks which do not depend on other parameters are handled by Param.validate(). This method does not handle input/output column parameters; those are checked during schema validation.

    Definition Classes
    Params
  99. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  100. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  101. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from NaiveBayesParams

Inherited from ProbabilisticClassifierParams

Inherited from HasThresholds

Inherited from HasProbabilityCol

Inherited from ClassifierParams

Inherited from HasRawPredictionCol

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from Model[NaiveBayesModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters