org.apache.spark.mllib.regression

GeneralizedLinearModel

abstract class GeneralizedLinearModel extends Serializable

:: DeveloperApi :: GeneralizedLinearModel (GLM) represents a model trained using GeneralizedLinearAlgorithm. GLMs consist of a weight vector and an intercept.

Annotations
@DeveloperApi()
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. GeneralizedLinearModel
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GeneralizedLinearModel(weights: Vector, intercept: Double)

    weights

    Weights computed for every feature.

    intercept

    Intercept computed for this model.

Abstract Value Members

  1. abstract def predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double): Double

    Predict the result given a data point and the weights learned.

    Predict the result given a data point and the weights learned.

    dataMatrix

    Row vector containing the features for this data point

    weightMatrix

    Column vector containing the weights of the model

    intercept

    Intercept of the model.

    Attributes
    protected

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. val intercept: Double

    Intercept computed for this model.

  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  18. def predict(testData: Vector): Double

    Predict values for a single data point using the model trained.

    Predict values for a single data point using the model trained.

    testData

    array representing a single data point

    returns

    Double prediction from the trained model

  19. def predict(testData: RDD[Vector]): RDD[Double]

    Predict values for the given data set using the model trained.

    Predict values for the given data set using the model trained.

    testData

    RDD representing data points to be predicted

    returns

    RDD[Double] where each entry contains the corresponding prediction

  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  21. def toString(): String

    Definition Classes
    GeneralizedLinearModel → AnyRef → Any
  22. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. val weights: Vector

    Weights computed for every feature.

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped