org.apache.spark.mllib.optimization

HingeGradient

class HingeGradient extends Gradient

:: DeveloperApi :: Compute gradient and loss for a Hinge loss function, as used in SVM binary classification. See also the documentation for the precise formulation. NOTE: This assumes that the labels are {0,1}

Annotations
@DeveloperApi()
Linear Supertypes
Gradient, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. HingeGradient
  2. Gradient
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new HingeGradient()

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def compute(data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double

    Compute the gradient and loss given the features of a single data point, add the gradient to a provided vector to avoid creating new objects, and return loss.

    Compute the gradient and loss given the features of a single data point, add the gradient to a provided vector to avoid creating new objects, and return loss.

    data

    features for one data point

    label

    label for this data point

    weights

    weights/coefficients corresponding to features

    cumGradient

    the computed gradient will be added to this vector

    returns

    loss

    Definition Classes
    HingeGradientGradient
  9. def compute(data: Vector, label: Double, weights: Vector): (Vector, Double)

    Compute the gradient and loss given the features of a single data point.

    Compute the gradient and loss given the features of a single data point.

    data

    features for one data point

    label

    label for this data point

    weights

    weights/coefficients corresponding to features

    returns

    (gradient: Vector, loss: Double)

    Definition Classes
    HingeGradientGradient
  10. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  12. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  20. def toString(): String

    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Gradient

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped